EUROMAP

45

PROTOCOL FOR COMMUNICATION BETWEEN BLOW MOULDING MACHINES AND A CENTRAL COMPUTER

Version 1.0, June 93

This recommendation was prepared bythe Working Group "Blow Moulding Machines" of EUROMAP.

Contents

1. General Specifications
1.1 Specification of EUROMAP 45 Topology
1.2 Communication Network
1.3 Communication Functions supported
2. Telegram Overview
2.1 Telegram List
2.2 Exchanged Data between Central Computer and Machines
3. Detailed Telegram Structure
3.1 Overview about Standard Functions
3.2 Exchanged Data between Central Computer and Machines (Detailed Telegram Structure)
4. Normative References

1. General Specifications

This part describes the requirements of the Blow Moulding Machine Application with respect to the communication between a Blow Moulding Machine and a central computer, the used standardized communication network, the required communication functions and the data exchanged between the Central Computer and the Blow Moulding Machines

1.1 Specification of EUROMAP 45 Topology

Blow Moulding Machines are connected via a standardized communication network to a central computer in order to exchange data (machine data, job related data, production status data, alarm data, process data, profiles, data sets...) between machines aid a central computer.
The topology is as follows:

Central Computer

e.g. Write data of job target to machine (initiated by Central Computer) Data of Job Target: number of parts number of parts per lot date of end of job
Standardized Communication deviation from planned number of parts

Blow Moulding Machines

Part 1.2 specifies the standardized communication network and part 1.3 the supported communication functions. Part 2.1 gives an overview of all EUROMAP 45 telegrams grouped in three categories and part 2.2 specifies all data to be exchanged e.g. Job Target as depicted in the figure above in an abstract way i.e. the notation used represents the application specificinformation independent of any encoding information. The formal specification using a standardized method is defined in part 3.2.

1.2 Communication Network

The ISO Reference Model for Open Systems Interconnection (OSI) has been defined to form a framework for the development of communication protocol standards. Layer 1 to 4 cover reliable data transmission with error detection and correction, and layers 5, 6 and 7 govern the application oriented dialogue between users.
The Manufacturing Message Specification (MMS, ISO 9506) is the mostimportant part of industrial communication to reduce the investment of building homogeneous automation systems using and integrating heterogeneous devices. MMS is the main application standard of MAP. MMS specifies more than 80 Services using the provided network functionality. The network itself is hidden to the application.
More important than a unique network is a unique application layerfor different network types and different applications. The MMS interface is the key issue in future communication systems.
EUROMAP 45 us as the following Local Area Network to link devices: IEEE 802.3 (ISO 8802-3) CarrierSense Multiple Access with Collision Detection (CSMA/CD, Ethernet), operating at 10 MBit per second with 500 m cable segments.
One basic idea of MAP/MMS is to support and promote interworking between controllers or devices in a heterogeneous system environment for distributed manufacturing automation based on a selection of useful OSI standards.
EUROMAP 45 uses a subset of proven MAP/MMS specification.

1.3 Communication Functions supported

The selected subset of MMS functions supports communication in the EUROMAP 45 environment between programmable devices and other intelligent devices, e.g. Personal Computer.
These functions are:

Basic functions

To communicate between the central computer and the machines basic functions e.g. connection establishment, identify machine or get status of machine are supported.

Variable access

Functions comparable with variable access in high-level computer languages (Read, Write, Information Report, Get Variable Access Attributes) are used e.g. to write a job definition from the central computer into a machine, to read job status or to receive specific profiles from a machine. The structures of these data are defined in variable objects. Reading and writing of data is initiated by the central computer, reporting data from a machine to the central computer is initiated by a machine.

2. Telegram Overview

2.1 Telegram List

EUROMAP 45 telegrams to be exchanged between the Central Computer and the Blow Moulding Machines are as follows:

Machine Identification
Job Definition
Job Target
Job Status 1
Job Status 2
Production Control Command
Production Status

$$
x
$$

Machine Status
Ancillary Equipment Status
Alarms
Operator Identification
Time and Date from Central Computer
Reinitialization of Production Counters after Machine Breakdown
Actual Material Consumption for Job
Setpoint of Part Quality Parameters
Actual Values of Part Quality Parameters
Actual Values of Process Parameters of extruder 1-8
Actual Values of Process Parameters of head 1-3
Actual Values of Process Parameters of station $1+2$
Limit Values of Process Parameters of Product of extruder 1-8
Limit Values of Process Parameters of Product of head 1-3
Limit Values of Process Parameters of Product of station 1+2
Profile $y(x)$ with x equidistant from Machine
Profile $y(x)$ with x equidistant from Computer
Profile $y(x)$ with x equidistant, Request from Computer
Profile $y(x)$ from Machine
Profile $y(x)$ from Computer
Profile y (x), Request from Computer
ASCII Text Transfer
Machine Configuration
Job Configuration
Log In
Data Set
Transfer Task

$$
\begin{array}{|c|}
\\
x \\
x \\
x \\
\\
\\
\\
\\
\\
\end{array}
$$

x

2.2 Exchanged Data between Central Computer and Machines

2.2.1 Machine Identification (Read by computer)

The Machine Identification is composed of the following components:
EUROMAP-Protocol version
manufacturer code
machine code
code of extruder 1
code of extruder 2
code of extruder 3
code of extruder 4
code of extruder 5
code of extruder 6
code of extruder 7
code of extruder 8
code of blow head 1
code of blow head 2
code of blow head 3
code of station 1
code of station 2

2.2.2 Job Definition (ReadNrite by computer, Reported by machine)

The Job Definition is composed of the following components:
job code
job text description
part code
part text description
colour
material code of extruder 1
material code of extruder 2
material code of extruder 3
material code of extruder 4
material code of extruder 5
material code of extruder 6
material code of extruder 7
material code of extruder 8
data set identification no. of processing data set
data set identification no. of machine data set

2.2.3. Job Target (Write by computer)

The Job Target is composed of the following components:
number of parts
number of parts per lot
date of end of job
deviation from planned number of parts

2.2.4 Job Status 1 (Reported by machine)
 The Job Status 1 is composed of the following components:
 number of machine cycles
 number of good parts
 number of moulds in production
 number of cavities in production

2.2.5 Job Status 2 (Read by computer, Reported by machine)

The Job Status 2 is composed of the following components:
number of rejected parts since start of job concerning to reject reason code 1 number of rejected parts since start of job concerning to reject reason code 2
number of rejected parts since start of job concerning to reject reason code 99

2.2.6 Production Control Command (Write by computer)

The Production Control Command is composed of the following components: remote operation mode "set up" remote operation mode "start" remote operation mode "stop"
2.2.7 Production Status (Reported by machine)

The Production Control Status is composed of the following components:
"Status Identification"
production
set up production
job target reached, production stopped
production automatically interrupted
production interrupted by operator
waiting for job definition
waiting for job start
"Production"
parts under quality specs
without ancillary equipment
job target reached
material change
colour change
reserved for EUROMAP
"Set up production"
no reason specified
set up of machine
set up of ancillary equipment
mould assembly
mould disassembly
change of extruder
change of head
change of die
change of blow pin
change of ancillary equipment
change of material
change of colour
test run
maintenance
reserved for EUROMAP
reserved for manufacturer's reasons
"Job target reached, production stopped"
reserved for EUROMAP
reserved for manufacturer's reasons
"Production automatically interrupted"
personal safety conditions
extruder fault
head fault
hydraulic unit fault clamping unit fault mould fault fault of transport device ancillary equipment fautt processing fault job target reached others reserved for EUROMAP reserved for manufacturer's reasons
"Production interrupted by operator" no reason specified general machine fautt mechanical machine fault hydraulic machine fault electrical machine fautt pneumatic machine fault mould fault
fautt of ancillary equipment
lack of material
processing fault
no operator available
job target reached
reserved for EUROMAP
reserved for manufacturer's reasons
"Waiting for job definition"
reserved for EUROMAP
reserved for manufacturer's reasons
"Waiting for job start"
reserved for EUROMAP
reserved for manufacturer's reasons

2.2.8 Machine Status (Reported by machine)

The Machine Status is composed of the following components:
"Status"
automatic
semi automatic
manual
set up
standby
"Number of total machine cycles"

2.2.9 Ancillary Equipment Status (Reported by machine)

The Ancillary Equipment Status is composed of the following components:
"Code of ancillary equipment"
"Status"

> automatic
manual
setup
standby
number of ancillary devices (repeated max. 20 times)

2.2.10 Alarms (Read by computer, Reported by machine)

The Alarms are composed of the following components:
personal safety conditions
extruder fault
head fault
hydraulic unit fault
clamping unit fautt
mould fault
fault of part transport device
ancillary equipment fauft
processing fautt
others
alarm time
This alarm bit pattern is useful for transfer of appeared and disappeared alarms and for synchronisation purposes.

2.2.11 Operator Identification (Read by computer, Reported by machine)

The Operator Identification is composed of the following components:
operator 1
operator 2

2.2.12 Time and Date from Central Computer (Write by computer)

The Time and Date from Central Computer is composed of the following component: time and date

2.2.13 Reinitialization of Production Counters after Machine Breakdown (Write by computer)

The Reinitialization of Production Counters after Machine Breakdown is composed of the following components:
number of total machine cycles number of machine cycles of actual job number of good parts of actual job

2.2.14 Actual Material Consumption for Job

(Read by computer, Reported by machine)
The Actual Material Consumption for Job is composed of the following components: actual material weight in hundredths of $\mathrm{kg} / \mathrm{lbs}$ of
extruder 1
extruder 2
extruder 3
extruder 4
extruder 5
extruder 6
extruder 7
extruder 8

2.2.15 Setpoint of Part Quality Parameters (ReadNrite by computer)

The Setpoint of Part Quality Parameters is composed of the following components:
"Part weight" in tenth of $\mathrm{g} / \mathrm{hundredth}$ of oz
"Gross weight" in tenth of g / hundredth of oz
... up to 99 components
All quality parameter values are structured: setpoint of part quality parameter
relative plus tolerance of part quality parameter
relative minus tolerance of part quality parameter

2.2.16 Actual Values of Part Quality Parameters (Reported by machine)

The Actual Value of Part Quality Parameters is composed of the following components:
"Part weight" in tenth of $\mathrm{g} / \mathrm{hundredth} \mathrm{of} \mathrm{oz}$
"Gross weight" in tenth of $g /$ hundredth of oz
... up to 99 components
All actual quality parameters are structured:
part identification code
actual part quality parameter

2.2.17 Actual Values of Process Parameters of Extruder (Reported by machine)

The Actual Value of Process Parameters of Extruder is composed of the following components:
"Extruder identification"
"Part identification code"
"Parameter"
melt temperature of extruder in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
melt pressure of extruder in bar / psi
torque of extruder in $\mathrm{Nm} / \mathrm{Nm}$
screw speed of extruder in $\mathrm{min}^{1} / \mathrm{rpm}$
cooling water temperature of feeding zone inlet of extruder in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
cooling water temperature of feeding zone outlet of extruder in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
cooling water flow of feeding zone of extruder in $\mathrm{V} / \mathrm{min} / \mathrm{cfm}$
actual value of throughput per hour of extruder in $\mathrm{kg} / \mathrm{h} / \mathrm{lbs} / \mathrm{h}$

2.2.18 Actual Values of Process Parameters of Head (Reported by machine)

The Actual Value of Process Parameters of Head is composed of the following components:
"Head identification"
"Part identification code"
"Parameter"
melt temperature of head in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
melt pressure of head in bar / psi
hydraulic pressure of ejection in bar/psi
ejection time of head in tenth of s / s
ejection volume of head in tenth of / cu.in.

2.2.19 Actual Values of Process Parameters of Station (Reported by machine)

The Actual Value of Process Parameters of Station is composed of the following components:
"Station identification"
"Part identification code"
"Parameter"
blowing pressure air in bar / psi blowing pressure nitrogen in bar/psi blowing pressure fluorine in bar/psi blowing pressure CO_{2} in bar / psi hydraulic pressure of clamping unit in bar / psi cooling water temperature of mould inlet of in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ cooling water temperature of mould outlet of in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ cooling water flow of mould in $\mathrm{l} / \mathrm{min} / \mathrm{cfm}$
cycle time in tenth of s / s

2.2.20 Limit Values of Process Parameters of Extruder 1 (Read/Write by computer)

The Limit Value of Process Parameters of Extruder 1 is composed of the following components:
melt temperature of extruder in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
melt pressure of extruder in bar / psi
torque of extruder in $\mathrm{Nm} / \mathrm{Nm}$
screw speed of extruder in min- / rpm
cooling water temperature of feeding zone inlet of extruder in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
cooling water temperature of feeding zone outlet of extruder in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
cooling water flow of feeding zone of extruder in $\mathrm{l} / \mathrm{min} / \mathrm{cfm}$
actual value of throughput per hour of extruder in $\mathrm{kg} / \mathrm{h} / \mathrm{lbs} / \mathrm{h}$
All parameter values are structured:
setpoint
lower limit value
upper limit value lower waming value upper waming value

2.2.21 Limit Values of Process Parameters of Extruder 2 (Read/Write by computer)

The Limit Value of Process Parameters of Extruder 2 is structured as defined in 2.2.20

2.2.22 Limit Values of Process Parameters of Extruder 3 (Read/Write by computer)

The Limit Value of Process Parameters of Extruder 3 is structured as defined in 2.2.20

2.2.23 Limit Values of Process Parameters of Extruder 4 (Read/Write by computer)

The Limit Value of Process Parameters of Extruder 4 is structured as defined in 2.2.20

2.2.24 Limit Values of Process Parameters of Extruder 5 (Read/Write by computer)

The Limit Value of Process Parameters of Extruder 5 is structured as defined in 2.2.20

2.2.25 Limit Values of Process Parameters of Extruder 6

 (Read/Write by computer)The Limit Value of Process Parameters of Extruder 6 is structured as defined in 2.2.20

2.2.26 Limit Values of Process Parameters of Extruder 7
 (Read/Write by computer)
 The Limit Value of Process Parameters of Extruder 7 is structured as defined in 2.2.20

2.2.27 Limit Values of Process Parameters of Extruder 8 (Read/Write by computer)

The Limit Value of Process Parameters of Extruder 8 is structured as defined in 2.2.20
2.2.28 Limit Values of Process Parameters of Head 1 (Read/Write by computer) The Limit Value of Process Parameters of Head 1is composed of the following components:
melt temperature of head in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ melt pressure of head in bar / psi hydraulic pressure of ejection in bar / psi ejection time of head in tenth of s / s ejection volume of head in tenth of / cu.in.

All parameter values are structured:
setpoint
lower limit value upper limit value lower waming value upper warning value

2.2.29 Limit Values of Process Parameters of Head 2 (Read/Write by computer)

 The Limit Value of Process Parameters of Head 2 is structured as defined in 2.2.28
2.2.30 Limit Values of Process Parameters of Head 3 (ReadWrite by computer)

 The Limit Value of Process Parameters of Head 3 is structured as defined in 2.2.28
2.2.31 Limit Values of Process Parameters of Station 1

(Read/Write by computer)
The Limit Value of Process Parameters of Station 1 is composed of the following components:
blowing pressure air in bar / psi blowing pressure nitrogen in bar / psi blowing pressure fluorine in bar / psi blowing pressure CO_{2} in bar/psi hydraulic pressure of clamping unit in bar / psi cooling water temp. of mould inlet of in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ cooling water temp. of mould outlet of in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ cooling water flow of mould in $1 / \mathrm{min} / \mathrm{cfm}$ cycle time in tenth of s / s

All parameter values are structured:
setpoint
lower limit value
upper limit value
lower warning value
upper warning value

2.2.32 Limit Values of Process Parameters of Station 2 (Read/Write by computer)

The Limit Value of Process Parameters of Station 2 is structured as defined in 2.2.31
2.2.33 Profile $y(x)$ (x equidistant) from Machine (Reported by machine)

The Profile $y(x)$ (xequidistant)from Machine is composed of the following components:
"Value Identification "
actual value
set value
positive tolerance value 1
positive folerance value 2
negative tolerance value 1
negative tolerance value 2
"Profile identification "
wall thickness profile (vertical 1)
wall thickness profile (vertical 2)
wall thickness profile (vertical 3)
wall thickness profile (vertical 4)
wall thickness profile (vertical 5)
wall thickness profile (radial 1)
wall thickness profile (radial 2)
ejection profile (head 1)
ejection profile (head 2)
ejection profile (head 3)
"Part identification code"
"Time in tenth of seconds or length in mm "
"Profile" is defined by $32-128$ values

2.2.34 Profile $y(x)$ (x equidistant) from Computer (Write by computer)
 The Profile $y(x)$ (x equidistant) from Computeris composed of thefollowing components:

"Value Identification "
set value
positive tolerance value 1
positive tolerance value 2
negative tolerance value 1
negative tolerance value 2
"Profile identification "
wall thickness profile (vertical 1)
wall thickness profile (vertical 2)
wall th ckness profile (vertical 3)
wall thickness profile (vertical 4)
wall thickness profile (vertical 5)
wall thickness profile (radial 1)
wall thickness profile (radial 2)
ejection profile (head 1)
ejection profile (head 2)
ejection profile (head 3)
"Time in tenth of seconds or length in mm "
"Profile" is defined by $32-128$ values

2.2.35 Profile $\mathbf{y}(\mathrm{x})$ (x equidistant), Request from Computer (Write by computer)

The Profile $y(x)$ (x equidistant), Request from Computer is composed of the following components:
"Value Identification "
actual value
set value
positive tolerance value 1
positive tolerance value 2
negative tolerance value 1
negative tolerance value 2
"Profile identification "
wall thickness profile (vertical 1)
wall thickness profile (vertical 2)
wall thickness profile (vertical 3)
wall thickness profile (vertical 4)
wall thickness profile (vertical 5)
wall thickness profile (radial 1)
wall thickness profile (radial 2)
ejection profile (head 1)
ejection profile (head 2)
ejection profile (head 3)

2.2.36 Profile $y(x)$ from Machine (Reported by machine)

The Profile $y(x)$ from Machine is composed of the following components:
"Value Identification "
actual value
set value
positive tolerance value 1
positive tolerance value 2
negative tolerance value 1
negative tolerance value 2
"Profile identification "
profile of mould closing slow down of station $1(s(t))$
profile of mould closing slow down of station $2(s(t))$
profile of mould closing slow down of station $1(v(s))$
profile of mould closing slow down of station $2(v(s))$
profile of blow pin movement of station 1 ($s(t)$)
profile of blow pin movement of station $2(s(t))$
profile of blow pin movement of station 1 ($v(s)$)
profile of blow pin movement of station $2(v(s))$
profile of blowing pressure of station 1
profile of blowing pressure of station2
"Part identification code"
"Profile points x "
"Profile points y "
each profile is defined by $32-256$ values

2.2.37 Profile $y(x)$ from Computer (Write by computer)

The Profile $y(x)$ from Computer is composed of the following components:
"Value Identification "
set value
positive tolerance value 1
positive tolerance value 2
negative tolerance value 1
negative tolerance value 2
"Profile identification "
profile of mould closing slow down of station $1(s(t))$
profile of mould closing slow down of station $2(s(t))$
profile of mould closing slow down of station $1(\mathrm{v}(\mathrm{s}))$
profile of mould closing slow down of station $2(v(s))$
profile of blow pin movement of station $1(s(t))$
proffle of blow pin movement of station $2(s(t))$
profile of blow pin movement of station $1(\mathrm{v}(\mathrm{s}))$
profile of blow pin movement of station $2(\mathrm{v}(\mathrm{s})$)
profile of blowing pressure of station 1
profile of blowing pressure of station2
"Profile points x"
"Profile points y"
each profile is defined by $32-256$ values
2.2.37 Profile $y(x)$, Request from Computer (Write by computer)

The Profile $y(x)$, Request from Computer is composed of the following components:
"Value Identification "
actual value
set value
positive tolerance value 1
positive tolerance value 2
negative tolerance value 1
negative tolerance value 2
"Profile identification "
profile of mould closing slow down of station $1(s(t))$
profile of mould closing slow down of station $2(s(t))$
profile of mould closing slow down of station $1(\mathrm{v}(\mathrm{s})$)
profile of mould closing slow down of station $2(v(s))$
profile of blow pin movement of station $1(s(t))$
profile of blow pin movement of station $2(s(t))$
profile of blow pin movement of station 1 ($v(s)$)
profile of blow pin movement of station $2(v(s))$
profile of blowing pressure of station1
profile of blowing pressure of station2
2.2.39 ASCII Text Transfer (Write by computer, Reported by machine)

The ASCII Text Transfer is composed of the following components:
input
output
2.2.40 Machine Configuration (Read by computer, Reported by machine)

The Machine Configuration is composed of the following components:
available
machine identification
actual value of part quality parameters
actual value of process parameters of
extruder 1-8
head 1-3
station 1-2

This Machine Configuration bit pattern is useful to transfer the availability of the machine's variables.

2.2.41 Job Configuration (Read/Write by computer)

The Job Configuration is structured as defined in 2.2.40
This Job Configuration bit pattern is useful to select the variables to be transferred.

2.2.42 Log In (Read/Write by computer, Reported by machine)

The Log In is composed of the following components:
log-on command / status of machine
log-off command / status of machine
log-on command/status of central computer
log-off command / status of central computer
This Log In bit pattern is useful to set the machine's or the computer's log-status

2.2.43 Data Set (Read/Write by computer)

The Data Set is composed of the following components:
Data set identification no.
Transferred block number
Data set values
2.2.44 Transfer Task (Write by computer, Reported by machine)

The Transfer Task is composed of the following components:
"Data set identification no."
"Number of last block"
"Task"
no task, end of task
start upload of processing specific data set initiated by machine Start download of processing specific data set initiated by machine start upload of machine specific data set initiated by machine start download of machine specific data set initiated by machine start upload of processing specific data set initiated by central computer start download of processing specific data set initiated by central computer
start upload of machine specific data set initiated by central computer start download of machine specific data set initiated by central computer
"Acknowledgement"
transfer allowed, positive acknowledgement for transfer wrong operation mode of machine data set not available at central computer data set already existing at central computer wrong data set uncomplete data set

3. Detailed Telegram Structure

3.1 Overview about Standard Functions

The basic concepts of MMS are the so-called Virtual Manufacturing Device (VMD) and the Client-Server-Model. The overall modelling of MMS is that two devices are connected by a communication system. One device plays the client role, requesting another device (the server) to perform some defined operation. The request is transferred by an Request Protocol Data Unit (PDU). The other plays the MMS server role, performing the requested operation and responding with information resulting from the operation. The Response is transferred by an Response PDU.
A VMD - defined in the Server - represents the standardized view of the structure and external visible behavior of a real manufacturing device and makes available, for control and monitoring, the resources and functionality associated with that real manufacturing device.
The VMD contains MMS objects, which are made available for manipulation by :MMS services. Such objects are variables and domains. A short description of these objects is given below (the names in the parenthesis describe examples of services which can be executed):
In EUROMAP 45 the VMD is located within the machine and the client within the central computer. The VMD contains all objects defined in part 3.2 of this document. The Client can use one of the defined functions e.g. Read, Write.

3.1.1 Environment and General Management

The environment and general management services contain the Initiate and Conclude services. These services allow the MMS-user:
a) to initiate communication with another MMS-user in the MMS environment, and to establish the requirements and capabilities that support that communication;
b) to conclude communication with another MMS-user in the MMS environment in a graceful manner;
c) to abort communications with another MMS-user in the MMS environment in an abrupt manner;
d) to cancel pending service requests;
e) to receive notification of protocol errors that occur.

3.1.2 VMD Support

The VMD support services contain the Status, UnsolicitedStatus, GetNameList and Identify services. The services allow the MMS-user to do the following:
a) get the status of a VMD;
b) receive an unsolicited message about the status of the VMD;
c) get lists of various defined objects;
d) identify the vendor specific attributes of the MMS application at the peer system;

3.1.3 Operations on the Named Variable Object

The services which operate upon the Named Variable object are listed below: Read - This service is used to obtain the value of a real variable described by the Named Variable object;
Write - This service is used to replace the value of a real variable described by the Named Variable object;
InformationReport - This service is used to obtain the value of a real vanable described by the Named Variable object;
GetVariableAccessAttributes - This service returns the attributes of a Named Variable object.

3.2 Exchanged Data between Central Computer and Machines (Detailed Telegram Structure)

3.2.1 EUROMAP 45 Types

The types "Identifier", "Integer8", "Integer16", "Integer32", "Unsigned8", "Unsigned16", and "Unsigned32" are used throughout this Standard. These types are defined as follows.


```
Identifier shall not begin with a digit.
```

```
Integer8 ::= INTEGER(-128..127) - range -128 <= i <= 127
Integer16 ::= INTEGER(-32768..32767) - range -32,768 <= i <=32,767
Integer32 ::= INTEGER(-2147483648..2147483647) - range -2**31<= i <= 2**31-1
Unsigned8 ::= INTEGER(0..127) - range 0 <= i<=127
Unsigned16 ::= INTEGER(0.32767) - range 0 <= i<= 32767
Unsigned32 ::= INTEGER(0..2147483647) - range 0 <= i < = 2**31-1
```


Array

This selection for the Type Specification parameter shall indicate that the node being described is a complex type that is constructed from an ordered sequence of elements of a single type, with elements numbered from zero (0), the first element, and increasing.

Structure

The Structure parameter shall specify that the node of the type tree describes a complex type that is constructed from an ordered list of one or more components, each of which may have a distinct type.

BIT STRING - The definition of this type is as specified for the bitstring type in ISO 8824. The Size parameter shall specify the number of bits in the bit string and an indication of whether this is an absolute number (indicating a fixed-length bitstring) or a maximum number (indicating a variable-length bitstring).
INTEGER - The definition of this type is as specified for the integer type in ISO 8824. The Size parameter shall specify the number of bits (assuming twos-complement representation) required in order to allow representation of all possible distinguished values.
UNSIGNED - The definition of this type is as specified for the integertype in ISO 8824, with the exclusion of the negative whole numbers. The Size parameter shall contain the number of bits (assuming binary representation) required in order to allow representation of all possible distinguished values.

OCTET STRING - The definition of this type is as specified for the octetstring type in ISO 8824 e. g. 'F0178534'H.
VISIBLE STRING - The definition of this type is as specified for the VisibleString type in ISO 8824 (ISO 646 String) e. g. "Matenalcode=287".
GENERALIZED TIME - Thedefinition of this type is as specified for the GeneralizedTime type in ISO 8824 e.g.: "19920921092010.0" means 21.09.1992 920 and 10 s.

3.2.2 Definition of the structured data for communication

The description method is an accepted standard description method used by most important industries e.g. automobile industries. The description allows precise and accurate definition of structured information for data exchange.
All EUROMAP 45 Telegrams are mapped onto MMS Variables without any lost of information.
Variable objects are:
3.2.2.1 Machine Identification
3.2.2.2 Job Definition
3.2.2.3 Job Target
3.2.2.4 Job Status 1
3.2.2.5 Job Status 2
3.2.2.6 Production Control Command
3.2.2.7 Production Status
3.2.2.8 Machine Status
3.2.2.9 Ancillary Equipment Status
3.2.2.10 Alarms
3.2.2.11 Operator Identification
3.2.2.11 Time and Date from Central Computer
3.2.2.13 Reinitialization of Production Counter after Machine Breakdown
3.2.2.14 Actual Material Consumption for Job
3.2.2.15 Setpoint of Part Quality Parameters
3.2.2.16 Actual Values of Part Quality Parameters
3.2.2.17 Actual Values of Process Parameters of Extruder 1-8
3.2.2.18 Actual Values of Process Parameters of Head 1-3
3.2.2.19 Actual Values of Process Parameters of Station 1-2
3.2.2.20 Limit Values of Process Parameters of Extruder 1
3.2.2.21 Limit Values of Process Parameters of Extruder 2
3.2.2.22 Limit Values of Process Parameters of Extruder 3
3.2.2.23 Limit Values of Process Parameters of Extruder 4
3.2.2.24 Limit Values of Process Parameters of Extruder 5
3.2.2.25 Limit Values of Process Parameters of Extruder 6
3.2.2.26 Limit Values of Process Parameters of Extruder 7
3.2.2.27 Limit Values of Process Parameters of Extruder 8
3.2.2.28 Limit Values of Process Parameters of Head 1
3.2.2.29 Limit Values of Process Parameters of Head 2
3.2.2.30 Limit Values of Process Parameters of Head 3
3.2.2.31 Limit Values of Process Parameters of Station 1
3.2.2.32 Limit Values of Process Parameters of Station 2
3.2.2.33 Profile $y(x)$ (x equidistant) from Machine
3.2.2.34 Profile $y(x)$ (x equidistant) from Computer
3.2.2.35 Profile $y(x)$ (x equidistant), Request from Computer
3.2.2.36 Profile $y(x)$ from Machine
3.2.2.37 Profile $y(x)$ from Computer
3.2.2.38 Profile $y(x)$, Request from Computer
3.2.2.39 ASCII Text Transfer
3.2.2.40 Machine Configuration
3.2.2.41 Job Configuration
3.2.2.42 Log In
3.2.2.43 nata Set
3.2.2.44 Transfer Task

3.2.2.1 Machine Identification

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "MACHID"
Attribute: MMS Deletable = FALSE
 Attribute: Type Description = array\{
number of Elements -Number of Codes (16)
semantic: EUROMAP-Protocol version Array element 0 manufacturer code Array element 1 machine code code of extruder 1 code of extruder 2 code of extruder 3 code of extruder 4 code of extruder 5 code of extruder 6 code of extruder 7 code of extruder 8 code of blow head 1 code of blow head 2 code of blow head 3 code of station 1 code of station 2 Array element 2 Array element 3 Array element 4 Array element 5 Array element 6 Array element 7 Array element 8
Array element 9
Array element 10
Array element 11
Array element 12
Array element 13
Array element 14
Array element 15
element Type $=$ visible string 4\}
Attribute: Access Method
Semantic: Implicit

3.2.2.2 Job Definition

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "JOBDEF" Attribute: MMS Deletable = FALSE
Attribute: Type Description = array\{
number of Elements -Number of Values(15)
semantic: job code
job text description
part code
part text description
colour
material code of extruder 1
material code of extruder 2
material code of extruder 3 material code of extruder 4 material code of extruder 5 material code of extruder 6 material code of extruder 7 material code of extruder 8
data set identification no. of processing data set data set identification no. of machine data set element Type $=$ visible string 20\}

	Information Report

Array element 0 Array element 1 Array element 2 Array element 3 Array element 4 Array element 5 Array element 6 Array element 7
Array element 8
Array element 9
Arrayelement 10
Arrayelement 11
Arrayelement 12
Arrayelement 13
Arrayelement 14

Attribute: Access Method
Semantic: Implicit

3.2.2.3 Job Target

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "JOBTARGT"
Attribute: MMS Deletable = FALSE
Attribute: Type Description = structure components \{ \{component Name = "NOPARTS" component Type = unsigned 32\}, semantic: number of parts \{component Name = "NOPASLOT" component Type = unsigned 16\}, semantic: number of parts per lot \{component Name = "DATENDJO" component Type = generalizedtime \}, semantic: date of end of job ccomponent Name = "DEVFRPLA" component Type $=$ integer 16 semantic: deviation from planned number of parts \}\}
Attribute: Access Method
Semantic: Implicit

3.2.2.4 Job Status 1

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "JOBSTAT1"
Attribute: MMS Deletable = FALSE
Attribute: Type Description = structure components \{
\{component Name = "NOCYCL"
component Type = unsigned 32\},
semantic: number of machine cycles
\{component Name = "NGODPART"
e.g.:19920921092010.0
21.09.19929.20 and 10 s

3.2.2.5 Job Status 2

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "JOBSTAT2" Attribute: MMS Deletable = FALSE
Attribute: Type Description = arrayl number of Elements -Number of reject reason codes (99) semantic: each array element represents the number of rejected parts since
start of job concerning to a reject reason code.
reject reason code 1
reject reason code 2
reject reason code 99 element Type = unsigned 16\}
Attribute: Access Method
Semantic: Implicit

3.2.2.6 Production Control Command

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "PRCONCMD" Attribute: MMS Deletable = FALSE
Attribute: Type Description = bit-string 16, semantic: remote operation mode "set up"
(2),

Attribute: Access Method remote operation mode "start" remote operation mode "stop"

Semantic: only one of three bits are allowed to be set at one time.

3.2.2.7 Production Status

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "PRODSTAT"
Attribute: MMS Deletable = FALSE
Attribute: Type Description = structure components \{
\{component Name = "STATID"
component Type = bit-string 16\},
semantic: Status as follows:

Production

(0)

Set up production
Job target reached, production stopped (2)
Production automatically interrupted
Production interrupted by operator (4)
Waiting for job definition
(5)

Waiting for job start
only one of seven bits are allowed to be set at one time
\{component Name = "PRODUC" component Type $=$ bit-string 32\},
semantic: parts under quality specs
Note: Status $=(0)$
without ancillary equipment
(0)
job target reached
(1)
material change
(2)
colour change
reserved for EUROMAP
(4)
(5-31)
\{component Name = "SETUPROD" component Type = bit-string 32\},
semantic: no reason specified
Note: Status =(1)
set up of machine (0)
set up of ancillary equipment (1)
set up of ancillary equipment
mould assembly
mould disassembly (4)
change of extruder (5)
change of head (6)
change of die
change of blow pin
(7)
change of ancillary equipment (6)
change of material
change of colour
test run
maintenance
(12)
reserved for EUROMAP
(13)
reserved for manufacturer's
(14-23)
reasons
\{component Name = "JTREPRST"
component Type = bit-string 32\},
semantic: job target reached, production stopped
reserved for EUROMAP
reserved for manufacturer's
reasons
\{component Name $=$ "PROAUINT"
component Type $=$ bit-string 32\},
semantic: production automatically interrupted personal safety conditions
extruder fault
head fault
hydraulic unit fault clamping unit fault mould fault fault of transport device ancillary equipment fault
processing fault
job target reached others reserved for EUROMAP reserved for manufacturer's reasons
\{component Name = "PROINOP" component Type = bit-string 32\}, semantic: production interrupted by operator no reason specified
general machine fault
mechanical machine fault
hydraulic machine fault
electrical machine fault
pneumatic machine fault
mould fault
fautt of ancillary equipment
lack of material
processing fault
no operator available
job target reached
reserved for EUROMAP
reserved for manufacturer's
reasons
(component Name = "WAITJODF" component Type = bit-string 32\},
semantic: waiting for job definition
reserved for EUROMAP
reserved for manufacturer's
reasons
\{component Name = "WAITJOST" component Type $=$ bit-string 32\},
semantic: waiting for job start
reserved for EUROMAP
reserved for manufacturer's reasons

Note: Status $=(3)$
(0)
(6)(9)
(11-23)
(24-31)
Note: Status $=(4)$
(0)
(1)
(2)
(9)
(12-24)
(25-31)
Note: Status $=(5)$

Note: Status $=(6)$
\}
Semantic: implicit. All components will be transfered. But only the marked component (marked by status component Name = "Statid") is valid.

Attribute: Access Method

3.2.2.8 Machine Status

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "MACHSTAT"
Attribute: MMS Deletable = FALSE
Attribute: Type Description = structure components \{
\{component Name = "STATUS"
component Type = bit-string 16\},
semantic: automatic (0)
semi automatic (1)
manual (2)
setup
standby
(4)
\{component Name = "NTOTMCYC" component Type = unsigned 32\}
semantic: Number of total machine cycles)
Attribute: Access Method
Semantic: only one of five bits are allowed to be set at one time.

3.2.2.9 Ancillary Equipment Status

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "ANEQSTAT"
Attribute: MMS Deletable = FALSE
Attribute: Type Description = array \{
numberOfElements - Number of ancillary devices (max. 20)
elementType $=$ structure $\{$
\{component Name = "CAE"
component Type = unsigned 16\},
semantic: code of ancillary equipment
\{component Name = "STATUS",
component Type = bit-string 16\}
semantic: automatic
(0)
manual
(1)
setup
standby (3) \}\}
Attribute: Access Method
Semantic: only one of four bits are allowed to be set at one time.

3.2.2.10 Alarms

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "ALARM"
Attribute: MMS Deletable = FALSE
Attribute: Type Description = structure \{

	Information Report

\{component Name = "PERSCOND"
component Type = bit-string 256\},
semantic: personal safety conditions emergency stop activated
safety gate open or safety photo cell activated
safety fautt of hydraulic pressure
safety fault of pneumatic pressure
(component Name = "EXTRF"
component Type = bit-string 256\},
semantic: extruder fault
stop of extruder 1
positive tolerance fault of barrel temperature of extruder 1 (1)
negative tolerance fault of barrel temperature of extruder 1
temperature sensor broken of extruder 1
short circuit of temperature sensor of extruder 1
heater band fault of extruder 1
cooling water fautt of feeding zone of extruder 1
minimum current fault of drive of extruder 1
maximum current fault of drive of extruder 1
fault of drive of extruder 1
stop of extruder 2
positive tolerance fault of barrel temperature of extruder 2
negative tolerance fault of barrel temperature of extruder 2
temperature sensor broken of extruder 2
short circuit of temperature sensor of extruder 2
heater band fault of extruder 2
cooling water fault of feeding zone of extruder 2
minimum current fault of drive of extruder 2
maximum current fault of drive of extruder 2
fault of drive of extruder 2
stop of extruder 3
positive tolerance fautt of barrel temperature of extruder 3
negative tolerance fault of barrel temperature of extruder 3
temperature sensor broken of extruder 3
short circuit of temperature sensor of extruder 3
heater band fault of extruder 3
cooling water fault of feeding zone of extruder 3
minimum current fault of drive of extruder 3
maximum current faut of drive of extruder 3
fault of drive of extruder 3
stop of extruder 4
positive tolerance fault of barrel temperature of extruder 4
negative tolerance fault of barrel temperature of extruder 4
temperature sensor broken of extruder 4 (32)
short circuit of temperature sensor of extruder 4
heater band fault of extruder 4
cooling water fault of feeding zone of extruder 4
minimum current fault of drive of extruder 4 maximum current fautt of drive of extruder 4 (37)fautt of drive of extruder 4(38)
stop of extruder 5 (39)
positive tolerance fault of barrel temperature of extruder 5 (40)
negative tolerance fault of barrel temperature of extruder 5 (41)
temperature sensor broken of extruder 5 (42) (42) (43)
short circuit of temperature sensor of extruder 5
heater band fautt of extruder 5 (44)
cooling water fault of feeding zone of extruder 5 (45) (46)
minimum current fault of drive of extruder 5
maximum current fault of drive of extruder 5(47)
fault of drive of extruder 5(48)
stop of extruder 6(49)
positive tolerance fault of barrel temperature of extruder 6 (50)
negative tolerance faut of barrel temperature of extruder 6 (51)
temperature sensor broken of extruder 6 (53)
short circuit of temperature sensor of extruder 6
heater band fault of extruder 6 (54)
cooling water fault of feeding zone of extruder 6 (55)
minimum current fault of drive of extruder 6 (56)
maximum current fault of drive of extruder 6 (57)
fault of drive of extruder 6 (58)
stop of extruder 7(59)
(60)positive tolerance fault of barrel temperature of extruder 7
negative tolerance fault of barrel temperature of extruder 7 (61)
temperature sensor broken of extruder 7 (62)
(63)short circuit of temperature sensor of extruder 7(64)
cooling water fault of feeding zone of extruder 7 (65) (66)minimum current fault of drive of extruder 7(67)
maximum current fault of drive of extruder 7(68)(69)
stop of extruder 8(70)
positive tolerance fault of barrel temperature of extruder 8 (71)
negative tolerance fault of barrel temperature of extruder 8 (72)
temperature sensor broken of extruder 8(73)
short circuit of temperature sensor of extruder 8 (74)
heater band fault of extruder 8 (75)
cooling water fault of feeding zone of extruder 8 (76)
minimum current fault of drive of extruder 8 (77)
maximum current fault of drive of extruder 8 (78)
fault of drive of extruder 8(79)
(component Name = "HEADF"component Type = bit-string 256),semantic: head faultpositive tolerance fault of temperature of head 1
(0)
negative tolerance fautt of temperature of head 1 (1)
temperature sensor broken of head 1
(2)
(2)
short circuit of temperature sensor of head 1 (3)
heater band fault of head 1 (4)
cooling water fault of head 1 (5)
fault of vertical wall thickness control of head 1 (6) (7)
fault of radial wall thickness control of head 1
fault of radial wall thickness control of head 1

constant position fault of clamping unit of station 2 (13)
controller fault of clamping unit of station 2(14)
stroke sensor fault of carriage of station 2 (15)
end position fault of carriage of station 2(16)
controller fault of carriage of station 2
\{component Name = "MOULDF"component Type = bit-string 256\},cutter fault(17)
semantic: mould fault(0)
blowing pressure faut of station 1 (1)
cooling water fault of station 1 (2)
core puller fault of station1 (3)
blow pin fault of station 1(4)
blow needle fault of station 1 (5)
ejector fault of station 1 (6)
parison prebinch fault of station 1 (7)
stretching fault of station 1(8)
fault of mould labeling unit (9)
blowing pressure fautt of station 2 (10)
cooling water fault of station 2 (11)
core puller fault of station2(12)
blow pin fault of station 2 (13)
blow needle fault of station 2 (14)
ejector fault of station 2 (15)
parison prebinch fault of station 2 (16)
stretching fault of station 2(17)
fault of mould labeling unit(18)
\{component Name $=$ "TRPDEVF"component Type = bit-string 256\},semantic: fault of part transport device
stroke sensor fault of part transport device of station 1(0)
controller fault of part transport device of station 1 (1)
end position fault of part transport device of station 1 (2)
part transport supervision activated of station 1 (3)
stroke sensor fault of part transport device of station 2 (4)
controller fault of part transport device of station 2 (5)
end position fault of part transport device of station 2 (6)
part transport supervision activated of station 2 (7)
(component Name = "ANEQUIF"component Type = bit-string 256\},semantic: ancillary equipment faultfault of post cooling station 1(0)
ancillary equipment of station 1 not ready (1)
fault of deflashing unit of station 1 (2)
fault of wide neck cutter of station 1 (3)
fault of leakage test of station 1 (4)
fault of post cooling station 2 (5)
ancillary equipment of station 2 not ready (6)
fault of deflashing unit of station 2
(7)
(7)
fault of wide neck cutter of station 2 (8)
fault of leakage test of station 2 (9)
\{component Name = "PROCF"
component Type = bit-string 256\},
semantic: processing fault
melt temperature fault of extruder 1
melt temperature fault of extruder 2
melt temperature fault of extruder 3
melt temperature fault of extruder 4
melt temperature fault of extruder 5
melt temperature fault of extruder 6
melt temperature fault of extruder 7
melt temperature fault of extruder 8
melt pressure fault of extruder 1
melt pressure fault of extruder 2
melt pressure fault of extruder 3
mett pressure fault of extruder 4
melt pressure fault of extruder 5
melt pressure fault of extruder 6
melt pressure fault of extruder 7
melt pressure fault of extruder 8
screw speed fault of extruder 1
screw speed fault of extruder 2
screw speed fault of extruder 3
screw speed fault of extruder 4
screw speed fault of extruder 5
screw speed fault of extruder 6
screw speed fault of extruder 7
screw speed fault of extruder 8
torque fault of extruder 1
torque fault of extruder 2
torque fault of extruder 3
torque fault of extruder 4
torque fault of extruder 5
torque fault of extruder 6
torque fautt of extruder 7
torque fault of extruder 8
throughout fault of extruder 1
throughput fault of extruder 2
throughput fault of extruder 3
throughput fault of extruder 4
throughput fault of extruder 5
throughput fault of extruder 6
throughput fault of extruder 7
throughput fault of extruder 8
blowing pressure fault of station 1
blowing pressure fault of station 2
tolerance supervision of ejection volume of head 1
tolerance supervision of ejection volume of head 2
tolerance supervision of ejection volume of head 3
cycle time supervision
ejection time supervision of head 1
ejection time supervision of head 2
ejection time supervision of head 3
tolerance supervision of wall thickness profile, vertical 2
tolerance supervision of wall thickness profile, vertical 3
tolerance supervision of wall thickness profile, vertical 4
tolerance supervision of wall thickness profile, vertical 5
tolerance supervision of wall thickness profile, radial 1
tolerance supervision of wall thickness profile, radial 2
tolerance supervision of ejection profile for head 1
tolerance supervision of ejection profile for head 2 tolerance supervision of ejection profile for head 3
tolerance supervision of mould closing profile of station 1
tolerance supervision of mould closing profile of station 2
tolerance superv. of blow pin movement profile of station 1
tolerance superv. of blow pin movement profile of station 2
tolerance supervision of blow pressure profile of station 1
tolerance supervision of blow pressure profile of station 2
(component Name = "OTH"
compcnent Type = bit-string 256\},
semantic: others

> air conditioning fault of control cabinet
cooling fault of controller
fautt of power supply
\{component Name = "ALATIME",
component Type $=$ timeOfDay \quad note: length 4 octet semantic: alarm time\}
Attribute: Access Method
Semantic: These Alarm bit patterms are useful for transfer of appeared and disappeared alarms and for synchronization purposes

3.2.2.11 Operator Identification

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "OPIDENT"
Attribute: MMS Deletable $=$ FALSE
Attribute: Type Description = structure
components \{
\{component Name = "OP1"
component Type $=$ visible-string 12 $\}$
semantic: operator 1
\{component Name = "OP2"
component Type = visible-string 12)
semantic: operator 2 \}
Attribute: Access Method
Semantic: Operator Identification

3.2.2.12 Time and Date from Central Computer

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "TIMEDATE" Attribute: MMS Deletable = FALSE
Attribute: Type Description = generalizedtime
 semantic: time and date

$$
\text { e.g.: } 19920921092010.0 \text { means } 21.09 .19929 .{ }^{20} \text { and } 10 \mathrm{~s}
$$

Attribute: Access Method
Semantic: Time and date from central computer

3.2.2.13 Reinitialization of Production Counters after Machine Breakdown

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "REINIT"
Attribute: MMS Deletable = FALSE
Attribute: Type Description = structure components \{
\{component Name = "NTOTCYC" component Type = unsigned 32\},
 semantic:number of total machine cycles \{component Name = "NMCYCAJO" component Type = unsigned 32\}, semantic: number of machine cycles of actual job
\{component Name = "NGODPAJO" component Type = unsigned 32\}, semantic: number of good parts of actual job)
Attribute: Access Method
Semantic: Implicit

3.2.2.14 Actual Material Consumption for Job

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "ACMACJOB" Attribute: MMS Deletable = FALSE
Attribute: Type Description = array (

Information Report
numberOfElements - Number of material values (8) elementType = unsigned 32\}
semantic: actual material weight in hundredths of $\mathrm{kg} / \mathrm{lbs}$ extruder 1 Array element 0 , extruder 2 Array element 1 , extruder 3 Array element 2, extruder 4 Array element 3 , extruder 5 Array element 4, extruder 6 Array element 5, extruder 7 Array element 6 , extruder 8 Array element 7,

Attribute: Access Method
Semantic: Implicit

3.2.2.15 Setpoint of Part Quality Parameters

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "SPOPAQU" Attribute: MMS Deletable = FALSE
Attribute: Type Description = array\{
number of Elements -number of Quality Parameters(1-99)
semantic: Part weight in tenth of $g /$ hundredth of oz Gross weight in tenth of $g /$ hundredth of oz Quality parameter 3

Array element 0 Array element 1 Array element 2

Quality parameter 99
element Type = structure components \{
\{component Name = "SPPAQU" component Type = unsigned 32\},
semantic: setpoint of part quality parameter
\{component Name = "RELPLUTO"
component Type = unsigned 16\},
semantic: relative plus tolerance of part quality parameter
\{component Name = "RELMINTO"
component Type = unsigned 16\},
semantic: relative minus tolerance of part quality parameter \}\}

Attribute: Access Method
Semantic: Implicit

3.2.2.16 Actual Values of Part Quality Parameters

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "AVALPAQU" Attribute: MMS Deletable = FALSE
Attribute: Type Description = array\{ number of Elements -number of Quality Parameters(1-99) $\begin{array}{lll}\text { semantic: } & \begin{array}{ll}\text { actual part weight quality parameter } \\ \text { actual gross weight quality parameter } & \text { Array element } 0 \\ \text { Array element } 1\end{array} \\ & \text { actual quality parameter 3 } & \text { Array element } 2\end{array}$ $\begin{array}{lll}\text { semantic: } & \text { actual part weight quality parameter } & \text { Array element } 0 \\ & \begin{array}{ll}\text { actual gross weight quality parameter } & \text { Array element } 1 \\ \text { actual quality parameter } 3\end{array} & \text { Array element } 2\end{array}$ $\begin{array}{lll}\text { semantic: } & \text { actual part weight quality parameter } & \text { Array element } 0 \\ & \begin{array}{ll}\text { actual gross weight quality parameter } & \text { Array element } 1 \\ \text { actual quality parameter 3 }\end{array} & \text { Array element } 2\end{array}$

actual quality parameter 99
Array element 98
element Type $=$ structure
components \{
(component Name = "PARTID"
component Type = unsigned 32\},
semantic: part identification code
\{component Name = "ACPARQU"
component Type = unsigned 32\},
semantic: actual part quality parameter
]\}
Attribute: Access Method
Semantic: Implicit

3.2.2.17 Actual Values of Process Parameters of Extruder

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "AVAPROE" Attribute: MMS Deletable $=$ FALSE
Attribute: Type Description = structure components \{
\{component Name = "EXTRUID"
component Type = unsigned 16\},
semantic: extruder identification
extruder $1=0$
extruder $2=1$
extruder $3=2$
extruder $3=2$
extruder $4=3$
extruder $5=4$
extruder $6=5$
extruder $6=5$
extruder $7=6$
extruder $8=7$
\{component Name = "PARTID" component Type = unsigned 32\}, semantic: part identification code (component Name = "PARAMETR" component Type $=$ array (number of Elements -number of Parameters (8) semantic: melt temperature of extruder in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ melt pressure of extruder in bar / psi Array element 1 torque of extruder in $\mathrm{Nm} / \mathrm{Nm}$ screw speed of extruder in min' / rpm cooling water temperature of feeding zone inlet of extruder in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ cooling water temperature of feeding zone outlet of extruder in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ cooling water flow of feeding zone of extruder in $1 / \mathrm{min} / \mathrm{cfm}$ actual value of throughput per hour of extruder in $\mathrm{kgh} / \mathrm{lbs} / \mathrm{h}$

Information
.
melt pressure of extruder in bar / psi
Array element 0
Array element 1
Array element 2
Array element 3
Array element 4
Array element 5
Array element 6
Array element 7
element Type $=$ integer 16\}
]\}
Attribute: Access Method
Semantic: Implicit

3.2.2.18 Actual Values of Process Parameters of Head

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "AVAPROH" Attribute: MMS Deletable = FALSE
Attribute: Type Description = structure
components \{
\{component Name = "HEADID"
component Type = unsigned 16\},
semantic: Head identification
Head $1=0$
Head $2=1$
Head $3=2$
\{component Name = "PARTID" component Type = unsigned 32\}, semantic: part identification code \{component Name = "PARAMETR" component Type = array \{ number of Elements -number of Parameters (5)
semantic: melt temperature of head in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F} \quad$ Array element 0 melt pressure of head in bar / psi Array element 1 hydraulic pressure of ejection in bar / psi Array element 2
ejection time of head in tenth of s / s
ejection volume of head in tenth of I/cu.in. Array element 3 element Type $=$ integer 16\} \})

Attribute: Access Method
Semantic: Implicit

3.2.2.19 Actual Values of Process Parameters of Station

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "AVAPROS" Attribute: MMS Deletable = FALSE
Attribute: Type Description = structure components \{
\{component Name = "STATID"
component Type = unsigned 16\},
semantic: Station identification
Station $1=0$
Station $2=1$
\{component Name = "PARTID"
component Type = unsigned 32\},
semantic: part identification code
(component Name = "PARAMETR"
component Type $=$ array $\{$
number of Elements -number of Parameters (9)
semantic: blowing pressure air in bar / psi Array element 0 blowing pressure nitrogen in bar / psi Array element 1
blowing pressure fluorine in bar / psi blowing pressure CO_{2} in bar/psi Array element 2 hydraulic pressure of clamping unit in bar / psi cooling water temp. of mould inlet of in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F} \quad$ Array element 5 cooling water temp. of mould outlet of in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ Array element 6 cooling water flow of mould in $/ / \mathrm{min} / \mathrm{cfm} \quad$ Array element 7 cycle time in tenth of s / s
element Type $=$ integer 16\}
)
Attribute: Access Method
Semantic: Implicit

3.2.2.20 Limit Values of Process Parameters of Extruder 1

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "LVAPROE1"
Attribute: MMS Deletable = FALSE
Attribute: Type Description = array
number of Elements -number of Parameters (8) semantic: melt temperature of extruder in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ melt pressure of extruder in bar / psi torque of extruder in $\mathrm{Nm} / \mathrm{Nm}$ screw speed of extruder in $\mathrm{min}^{1} / \mathrm{rpm}$ cooling water temperature of feeding zone inlet of Extruder in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ cooling water temperature of feeding zone outlet of Extruder in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ cooling water flow of feeding zone of Extruder in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ actual value of throughput of Extruder in kgh /lbsh element Type = array\{ number of Elements -number of Limit Valus (5)

semantic:	setpoint	Array element 0
	lower limit vaue	Array element 1
	upper limit value	Array element 2
	lower waming value	Array element 3
	upper waming value	Array element 4
	pe $=$ integer 1673	Aray elomet

Attribute: Access Method
Semantic: Implicit

3.2.2.21 Limit Values of Process Parameters of Extruder 2

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "LVAPROE2"
Attribute: MMS Deletable = FALSE
Attribute: Type Description = array

... note: same structure as defined in 3.2.2.20
Array element 0
Array element 1
Array element 2
Array element 3
Array element 4
Array element 5
Array element 6
Array element 7

Array element 0
Array element 1
Array element 2
Array element 3
Array element 4

3.2.2.22 Limit Values of Process Parameters of Extruder 3

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "LVAPROE3"
Attribute: MMS Deletable = FALSE
Attribute: Type Description = array
... note: same structure as defined in 3.2.2.20

3.2.2.23 Limit Values of Process Parameters of Extruder 4

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "LVAPROE4"
Attribute: MMS Deletable = FALSE
Attribute: Type Description = array

... note: same structure as defined in 3.2.2.20

3.2.2.24 Limit Values of Process Parameters of Extruder 5

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "LVAPROE5"
Attribute: MMS Deletable = FALSE
Attribute: Type Description = array

... note: same structure as defined in 3.2.2.20

3.2.2.25 Limit Values of Process Parameters of Extruder 6

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "LVAPROE6"
Attribute: MMS Deletable = FALSE
Attribute: Type Description = array

... note: same structure as defined in 3.2.2.20

3.2.2.26 Limit Values of Process Parameters of Extruder 7

Object: Named Variable

Key Attribute: Variable Name = VMD-specific "LVAPROE7"
Attribute: MMS Deletable = FALSE
Attribute: Type Description = array

3.2.2.27 Limit Values of Process Parameters of Extruder 8

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "LVAPROE8"
Attribute: MMS Deletable = FALSE
Attribute: Type Description = array

... note: same structure as defined in 3.2.2.20

3.2.2.28 Limit Values of Process Parameters of Head 1

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "LVAPROH1"
Attribute: MMS Deletable = FALSE
Attribute: Type Description = array\{
number of Elements -number of Parameters (5)
semantic: melt temperature of head in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
melt pressure of head in bar / psi
hydraulic pressure of ejection in bar / psi
ejection time of head in tenth of s / s
ejection volume of head in tenth of I cu.in. element Type = array number of Elements -number of Limit Valus (5)
semantic: setpoint
lower limit vaue
upper limit value
lower waming value
upper warning value
element Type = integer 16\}\}

Array element 0 Array element 1 Array element 2 Array element 3 Array element 4

Attribute: Access Method
Semantic: Implicit

3.2.2.29 Limit Values of Process Parameters of Head 2

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "LVAPROH2"
Attribute: MMS Deletable = FALSE
Attribute: Type Description = array

... note: same structure as defined in 3.2.2.28

3.2.2.30 Limit Values of Process Parameters of Head 3

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "LVAPROH3"
Attribute: MMS Deletable = FALSE
Attribute: Type Description = array

3.2.2.31 Limit Values of Process Parameters of Station 1

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "LVAPROS1" Attribute: MMS Deletable = FALSE
Attribute: Type Description = array\{ number of Elements -number of Parameters (9)
semantic: blowing pressure air in bar / psi
blowing pressure nitrogen in bar / psi
blowing pressure flourine in bar / psi
blowing pressure CO_{2} in bar/psi
hydraulic pressure of clamping unit in bar / psi
cooling water temp. of mould inlet in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
cooling water temp. of mould outlet in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
cooling water flow of mould in $\mathrm{V} \mathrm{min} / \mathrm{cfm}$
cycle time in tenth of s / s
element Type $=$ array
number of Elements -number of Limit Valus (5)
semantic: setpoint
lower limit vaue
upper limit value lower warning value upper warning value
element Type = integer 16\}\}

Array element 0 Array element 1 Array element 2 Array element 3 Array element 4 Array element 5 Array element 6 Array element 7 Array element 8

Array element 0
Array element 1
Array element 2
Array element 3
Array element 4

Attribute: Access Method
Semantic: Implicit

3.2.2.32 Limit Values of Process Parameters of Station 2

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "LVAPROS2"
Attribute: MMS Deletable = FALSE
Attribute: Type Description = array
... note: same structure as defined in 3.2.2.31

	Read Write	.

3.2.2.33 Profile $y(x)$ (x equidistant) from Machine

Object: Named Variable

Key Attribute: Variable Name = VMD-specific "PROFE_M" Attribute: MMS Deletable = FALSE
Attribute: Type Description = structure
components \{
\{component Name = "VALID", component Type = unsigned 16\}
 semantic: value identification actual value $\quad=0$ set value $=1$ positive tolerance value $1=2$ positive tolerance value $2=3$ negative tolerance value $1=4$ negative tolerance value $2=5$
\{component Name = "PROFID", component Type = unsigned 16\} semantic: profile identification wall thickness profile (vertical 1) $=0$ wall thickness profile (vertical 2) $=1$ wall thickness profile (vertical 3) =2 wall thickness profile (vertical 4) =3 wall thickness profile (vertical 5) $=4$ wall thickness profile (radial 1) =5 wall thickness profile (radial 2) $=6$
ejection profile (head 1) $=7$
ejection profile (head 2) $=8$
ejection profile (head 3) $=9$
\{component Name = "PARTID",
component Type = unsigned 32\}
semantic: part identification code
\{component Name = "TIMLNGTH",
component Type = unsigned 16\}
semantic: time in tenth of seconds or length in mm
\{component Name = "PROFILE",
component Type = array \{
numberOfElements \quad - Number of profile points (32-128)
elementType $=$ unsigned 16\}\}
semantic: $y(x)=s_{w}(t), s_{w}(l), \quad$ (wall thickness profiles)
$y(x)=v_{E}(1), \quad$ (ejection profiles)
($t=$ cycle time of wall thickness profile, $l=e j e c t i o n ~ s t r o k e) ~$
\}

Attribute: Access Method
Semantic: Implicit

3.2.2.34 Profile $y(x)$ (x equidistant) from Computer

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "PROFE_C" Attribute: MMS Deletable = FALSE
Attribute: Type Description = structure
components \{

(component Name = "VALID",
component Type = unsigned 16\}
semantic: value identification set value $=1$ positive tolerance value $1=2$ positive tolerance value $2=3$
negative tolerance value $1=4$
negative tolerance value $2=5$
(component Name = "PROFID",
component Type $=$ unsigned 16\}
semantic: profile identification
wall thickness profile (vertical 1) $=0$
wall thickness profile (vertical 2) $=1$
wall thickness profile (vertical 3) $=2$
wall thickness profile (vertical 4) =3
wall thickness profile (vertical 5) $=4$
wall thickness profile (radial 1) $=5$
wall thickness profile (radial 2) $=6$
ejection profile (head 1) $=7$
ejection profile (head 2) $=8$
ejection profile (head 3) $=9$
\{component Name = "TIMLNGTH", component Type = unsigned 16\}
semantic: time in tenth of seconds or length in mm
\{component Name = "PROFILE",
component Type = array $\{$
numberOfElements \quad - Number of profile points (32-128)
elementType $=$ unsigned 16\}\}
semantic: $\quad y(x)=s_{w}(t), s_{w}(1)$, (wall thickness profiles)
$y(x)=v_{E}(1), \quad$ (ejection profiles)
($t=$ cycle time of wall thickness profile, $l=$ ejection stroke) \}

Attribute: Access Method
Semantic: Implicit

3.2.2.35 Profile $y(x)(x$ equidistant), Request from Computer

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "PROFE_RQ" Attribute: MMS Deletable = FALSE
Attribute: Type Description = structure components \{
\{component Name = "VALID", component Type = unsigned 16\}
semantic: value identification
actual value $=0$
set value $=1$
positive tolerance value $1=2$
positive tolerance value $2=3$
negative tolerance value $1=4$
negative tolerance value $2=5$
\{component Name = "PROFID",
component Type $=$ unsigned 16\}
semantic: profile identification wall thickness profile (vertical 1) $=0$ wall thickness profile (vertical 2) $=1$ wall thickness profile (vertical 3) $=2$ wall thickness profile (vertical 4) =3 wall thickness profile (vertical 5) = 4 wall thickness profile (radial 1) $=5$ wall thickness profile (radial 2) $=6$ ejection profile (head 1) $=7$ ejection profile (head 2) $=8$ ejection profile (head 3) $=9$ \}

$=2$
$=3$
note: This variable gives the possibility to read a specific profile from the machine. It is transferred by Information Report 3.2.2.33

Attribute: Access Method

Semantic: Implicit

3.2.2.36 Profile $y(x)$ from Machine

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "PROFYX_M"
Attribute: MMS Deletable = FALSE
Attribute: Type Description = structure components \{ \{component Name = "VALID", component Type = unsigned 16\} semantic: value identification actual value $\quad=0$ set value $=1$ positive tolerance value $1=2$ positive tolerance value $2=3$ negative tolerance value $1=4$ negative tolerance value $2=5$ \{component Name = "PROFID", component Type = unsigned 16\} semantic: identification of profile profile of mould closing slow down of station $1(s(t))=0$ profile of mould closing slow down of station $2(s(t))=1$ profile of mould closing slow down of station $1(\mathrm{v}(\mathrm{s})$) $=2$ profile of mould closing slow down of station $2(v(s))=3$ profile of blow pin movement of station $1(s(t))=4$ profile of blow pin movement of station $2(s(t))=5$ profile of blow pin movement of station $1(v(s))=6$ profile of blow pin movement of station $2(v(s))=7$ profile of blowing pressure of station1 $=8$ profile of blowing pressure of station2 $=9$ \{component Name = "PARTID", component Type $=$ unsigned 32\} semantic: part identification code
\{component Name = "PROFILX", component Type = array \{ numberOfElements \quad - Number of profile points $\times(32-256)$ elementType $=$ integer 32\}\} \{component Name = "PROFILY", component Type = array \{
numberOfElements - Number of profile points y (32-256)
elementType $=$ integer 32\}\}
semantic: $y(x)=s(t) \quad$ (for profiles $s(t))$
$y(x)=v(s) \quad$ (for profiles $v(s)$)
$y(x)=p(t) \quad$ (for profiles of blowing pressure)
(s in mm, v in mm/s, p in bar, t in seconds, $t=0=$ start of profile)
\}
Attribute: Access Method
Semantic: Implicit

3.2.2.37 Profile $y(x)$ from Computer

Object: Named Variable

Key Attribute: Variable Name = VMD-specific "PROFYX_C"
Attribute: MMS Deletable = FALSE
Attribute: Type Description = structure
components $\{$

\{component Name = "VALID",
component Type $=$ unsigned 16\}
semantic: value identification
set value $=1$
positive tolerance value $1=2$
positive tolerance value $2=3$
negative tolerance value $1=4$
negative tolerance value $2=5$
\{component Name = "PROFID",
component Type $=$ unsigned 16\}
semantic: identification of profile
profile of mould closing slow down of station $1(s(t))=0$
profile of mould closing slow down of station $2(s(t))=1$
profile of mould closing slow down of station $1(v(s))=2$
profile of mould closing slow down of station $2(v(s))=3$
profile of blow pin movement of station $1(s(t))=4$
profile of blow pin movement of station $2(s(t))=5$
profile of blow pin movement of station $1(v(s))=6$
profile of blow pin movement of station $2(v(s))=7$
profile of blowing pressure of station1 $=8$
profile of blowing pressure of station2 $=9$
\{component Name = "PROFILX",
component Type = array $\{$
numberOfElements
elementType $=$ integer 32\}\}
\{component Name = "PROFILY",
component Type = array \{
numberOfElements \quad - Number of profile points y (32-256)
elementType = integer 32\})
semantic: $\quad y(x)=s(t)$

$$
y(x)=v(s) \quad \text { (for profiles } v(s))
$$

- Number of profile points \times (32-256)
(for profiles $s(t)$)

$$
\begin{array}{ll}
y(x)=p(t) & \text { (for profiles of blowing pressure) }
\end{array}
$$

(s in mm, v in $\mathrm{mm} / \mathrm{s}, \mathrm{p}$ in bar, t in seconds, $t=0=$ start of profile) \}
Attribute: Access Method
Semantic: Implicit

3.2.2.38 Profile $\mathbf{y}(\mathrm{x})$, Request from Computer

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "PROFYX_R"
Attribute: MMS Deletable = FALSE
Attribute: Type Description = structure
components $\{$
\{component Name = "VALID", component Type = unsigned 16\}
semantic: value identification
actual value $=0$
set value $=1$
positive tolerance value $1=2$
positive tolerance value $2=3$
negative tolerance value $1=4$
negative tolerance value $2=5$
\{component Name = "PROFID",
component Type = unsigned 16\}
semantic: identification of profile
profile of mould closing slow down of station $1(s(t))=0$
profile of mould closing slow down of station $2(s(t))=1$
profile of mould closing slow down of station $1(v(s))=2$
profile of mould closing slow down of station $2(v(s))=3$
$\begin{array}{ll}\text { profile of blow pin movement of station } 1(s(t)) & =4\end{array}$
profile of blow pin movement of station $2(s(t))=5$
profile of blow pin movement of station $1(v(s))=6$
profile of blow pin movement of station $2(v(s)) \quad=7$
profile of blowing pressure of stationt
$\begin{aligned} & \text { profile of blowing pressure of station1 } \\ & \text { profile of blowing pressure of }\end{aligned}=8$
$\begin{array}{ll}\text { profile of blowing pressure of station2 } & =9\end{array}$
\}
note: This variable gives the possibility to read a specific profile from the machine. It is transfered by Information Report 3.2.2.36

Attribute: Access Method
Semantic: Implicit

3.2.2.39 ASCII Text Transfer

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "ASCII_OU" Attribute: MMS Deletable = FALSE
Attribute: Type Description = visible-string 2000 semantic: text for output at machine

Attribute: Access Method
Semantic: Implicit

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "ASCII_IN" Attribute: MMS Deletable = FALSE
Attribute: Type Description = visible-string 2000 semantic: text for input at machine

	Information Report

Attribute: Access Method
Semantic: Implicit

3.2.2.40 Machine Configuration

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "MACHCON"
Attribute: MMS Deleteable = FALSE
Attribute: Type Description = Structure components\{ \{component Name="AVAILABL" component Type=bit-string 176\}
semantic: $\begin{aligned} & \text { machine identification } \\ & \text { job definition }\end{aligned}$
job definition (1)
job target
job status 1
job status 2
production control command

production status (1)
machine status
ancillary aquipment Status
alarms
operator identification
time and date from central computer
reinitialisation of production counter
actual material consumption for job
setpoint of part quality parameters
actual value of part quality parameters (14)
actual value of part quality parameters (15)
actual values of process parameters of
extruder 1
extruder 2
extruder 3
extruder 4
extruder 5
(16)
extruder 6
extruder 7
extruder 8
head 1
head 2
head 3
station 1 (26)
station 2
limit values of process paramters of extruder 1
extruder 2
extruder 3
extruder 4
(31)
extruder 5
extruder 6
(33)
extruder 7
extruder 8
head 1

head 2

head 3
station 1
station 2

profile $y(x)$ for wall thickness	gative tolera (vertical 1)	$\begin{aligned} & \text { x eq) } \\ & \text { (82) } \end{aligned}$
	(vertical 2)	(83)
	(vertical 3)	(84)
	(vertical 4)	(85)
	(vertical 5)	(86)
	(radial 1)	(87)
ejection profile	(radial 2)	(88)
	(head 1)	(89)
	(head 2)	(90)
	(head 3)	(91)

profile $y(x)$ for negative tolerance value 2 (x equidistant) wall thickness (vertical 1)
(vertical 2)
(93)
(vertical 3)
(vertical 4)
(95)
(vertical 5)
(96)
(radial 1)
(97)
(radial 2)
(98)
ejection profile (head 1)
(head 2)
(head 3)
(101)
profile $y(x)$ for actual value
mould closing slow down of
station $1(s(t))$
station $2(s(t))$
station $1(v(s))$
station $2(v(s))$
blow pin movement station $1(s(t))$
blow pin movement station $2(s(t))$
blow pin movement station $1(v(s))$
blow pin movement station $2(v(s)$)
blowing pressure of station 1
blowing pressure of station 2
profile $y(x)$ for set value
mould closing slow down of
station 1 ($s(t)$)
station $2(s(t))$
station $1(\mathrm{v}(\mathrm{s})$)
station $2(v(s))$
blow pin movement station $1(s(t))$
blow pin movement station $2(s(t))$
blow pin movement station $1(v(s))$
blow pin movement station $2(v(s))$
blowing pressure of station 1
blowing pressure of station 2
profile $y(x)$ for positive tolerance value 1 mould closing slow down of station 1 ($s(t)$) (122) (123)
station $2(s(t))$
station $2(s(t))$
station 1 ($\mathrm{v}(\mathrm{s})$) (124)
station $2(v(s))$ (125)
blow pin movement station $1(s(t))$ (126)
blow pin movement station $2(s(t))$ (127)
blow pin movement station $1(v(s)$) (128)
blow pin movement station $2(v(s)$) (129)
blowing pressure of station 1 (130)blowing pressure of station 2(131)
profile $y(x)$ for positive tolerance value 2 mould closing slow down of station $1(s(t))$(132)
station $2(s(t))$ (133)
station $1(v(s))$ (134)station $2(v(s))$(135)
blow pin movement station $1(s(t))$ (136)
blow pin movement station $2(s(t))$ (137)
blow pin movement station $1(v(s))$ (138)
blow pin movement station $2(v(s))$ (139)
blowing pressure of station 1 (140)
blowing pressure of station 2 (141)
profile $y(x)$ for negative tolerance value 1mould closing slow down ofstation 1 ($s(t)$)station $2(s(t))$station $1(v(s))$(142)
(143)
station $2(v(s))$(144)
(145)blow pin movement station $1(s(t))$
(146)blow pin movement station $2(s(t))$
blow pin movement station $1(v(s))$ (147)
blow pin movement station $2(v(s)$) (148)
blowing pressure of station 1 (149)
blowing pressure of station 2 (150) (150)
profile $y(x)$ for negative tolerance value 1mould closing slow down ofstation $1(s(t))$
station $2(s(t))$(153)
station 1 ($v(s)$)
station $2(\mathrm{v}(\mathrm{s})$) (154)
blow pin movement station $1(s(t))$ (155)
blow pin movement station $2(s(t))$ (156)
blow pin movement station $1(v(s))$ (157) (157)
blow pin movement station $2(v(s))$ (159)blowing pressure of station 1blowing pressure of station 2(160)(161)

$$
\begin{align*}
& \text { text for output at machine } \tag{162}\\
& \text { text for input at machine } \\
& \text { reserved for EUROMAP }
\end{align*}
$$

\{component Name="MACHID" component Type=bit-string 16\}
semantic: code of extruder 1 (0)
code of extruder 2
code of extruder 3
(2)
code of extruder 4
(3)
code of extruder 5
(4)
code of extruder 6
(5)
code of extruder 7
(6)
code of extruder 8
code of blow head 1
(8)
code of blow head 2
code of blow head 3
code of station 1 code of station 2
reserved for EUROMAP

\{component Name = "AVALPAQU"

 component Type = bit-string 112\}semantic: actual part weight quality parameter
actual gross weight quality parameter

> actual quality parameter 99 reserved for EUROMAP
\{component Name = "AVAPROE1"
component Type $=$ bit-string 16\}
semantic: actual value of process parameters of extruder 1 melt temperature of extruder in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ (0) melt pressure of extruder in bar / psi (1) torque of extruder in $\mathrm{Nm} / \mathrm{Nm}$
screw speed of extruder in $\mathrm{min}^{-1} / \mathrm{rpm}$
cooling water temperature of feeding zone inlet of extruder in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
cooling water temperature of feeding zone outlet of extruder in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
cooling water flow of feeding zone of extruder in $1 / \mathrm{min} / \mathrm{cfm}$ actual value of throughput per hour of extruder in $\mathrm{kg} / \mathrm{h} / \mathrm{lbs} / \mathrm{h}$ reserved for EUROMAP

```
{component Name = "AVAPROE2"
component Type = bit-string 16}
    semantic: actual value of process parameters of extruder 2
```

```
{component Name = "AVAPROE3"
```

component Type = bit-string 16\}
semantic: actual value of process parameters of extruder 3
... note: same structure as "AVAPROE1"
\{component Name = "AVAPROE4"
component Type $=$ bit-string 16$\}$
semantic: actual value of process parameters of extruder 4
... note: same structure as "AVAPROE1"
\{component Name = "AVAPROE5" component Type = bit-string 16\}
semantic: actual value of process parameters of extruder 5
... note: same structure as "AVAPROE1"
\{component Name = "AVAPROE6" component Type = bit-string 16\}
semantic: actual value of process parameters of extruder 6
... note: same structure as "AVAPROE1"
\{component Name = "AVAPROE7" component Type = bit-string 16\}
semantic: actual value of process parameters of extruder 7
... note: same structure as "AVAPROE1"
\{component Name = "AVAPROE8"
component Type = bit-string 16\}
semantic: actual value of process parameters of extruder 8
... note: same structure as "AVAPROE1"
\{component Name = "AVAPROH1"
component Type = bit-string 16\}
semantic: actual value of process parameters of head 1 melt temperature of head in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
melt pressure of head in bar / psi
hydraulic pressure of ejection in bar / psi
ejection time of head in tenth of s / s
ejection volume of head in tenth of / cu.in. reserved for EUROMAP
\{component $\mathrm{Name}=$ "AVAPROH2"
component Type $=$ bit-string 16\}
semantic: actual value of process parameters of head 2
... note: same structure as "AVAPROH1"
\{component Name = "AVAPROH3" component Type = bit-string 16\} semantic: actual value of process parameters of head 3
... note: same structure as "AVAPROH1"
\{component Name = "AVAPROS1"
component Type = bit-string 16\}
semantic: actual value of process parameters of station 1 blowing pressure air in bar / psi
blowing pressure nitrogen in bar / psi (1)
blowing pressure fluorine in bar / psi
blowing pressure CO_{2} in bar/psi
hydraulic pressure of clamping unit in bar / psi (4) cooling water temp. of mould inlet of in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
cooling water temp. of mould outlet of in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
cooling water flow of mould in $\mathrm{V} / \mathrm{min} / \mathrm{cfm}$ cycle time in tenth of s / s reserved for EUROMAP
\{component Name = "AVAPROS2"
component Type $=$ bit-string 16
semantic: actual value of process parameters of station 2
... note: same structure as "AVAPROS1"
\}

3.2.2.41 Job Configuration

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "JOBCON"
Attribute: MMS Deleteable = FALSE
Attribute: Type Description = Structure

... \quad - note: same structure as defined in 3.2.2.40
semantic: only bits that are set in "MACHCON" are allowed to change here

3.2.2.42 Log In

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "LOGIN"
Attribute: MMS Deleteable = FALSE
Attribute: Type Description = bit-string 16
Semantic:
log-on command / status of machine log-off command / status of machine
 log-on command / status of central computer
(0) log-off command/status of central computer
When the machine is switched on, the old log-status of the machine before switching off is generated automatically. reserved for EUROMAP

Attribute: Access Method
Semantic:Implicit

3.2.2.43 Data Set

Object: Named Variable
Key Attribute: Variable Name = VMD-specific "DATASET"
Attribute: MMS Deletable $=$ FALSE
Attribute: Type Description = structure
components \{
\{component Name = "IDDATA" component Type = visible-string 20 ${ }^{2}$, semantic: data set identification no. \{component Name = "BLOCKNO" component Type = unsigned 16\}, semantic: transfered block number (0... max. block number) \{component Name = "VALUE" component Type =octet string of $n\}$, Semantic: data set values
$\ldots \quad$ note: length n is manufacturer and machine specific.
\}
Attribute: Access Method
Semantic: Implicit

3.2.2.44 Transfer Task

4. Normative References

ISO7498-1:1984, Information Processing Systems -Open Systems Interconnection - Basic Reference Model.

ISO 7498-3, Information Processing Systems - Open Systems Interconnection Naming and Addressing.

ISO 8326:1987, Information Processing Systems - Open Systems Interconnection Basic Connection Oriented Session Service Definition.
ISOTR/8509:1987, InformationProcessing Systems - OpenSystems Interconnection - Service Conventions.

ISO 8649:1987, Information Processing Systems - Open Systems Interconnection Association Control Service Element - Service Definition.
ISO 8650:1987,Information Processing Systems - Open Systems Interconnection Association Control Service Element - Protocol Specification.
ISO 8822:1987, Information Processing Systems - Open Systems Interconnection Connection Oriented Presentation Service Definition.
ISO 8824:1987, Information Processing Systems - Open Systems Interconnection Specification of Abstract Syntax Notation One (ASN.1).
ISOREC 9506-1:1990, Industrial Automation Systems - Manufacturing Message Specification (MMS). Part 1: Service Definition.
ISONEC 9506-2:1990, Industrial Automation Systems - Manufacturing Message Specification (MMS). Part 2: Protocol Specification.

EUROMAP

Europäisches Komitee der Hersteller von Kunststoff- und Gummimaschinen

European Committee of Machinery Manufacturers for the Plastics and Rubber Industries

Comité Européen des Constructeurs de Machines pour Plastiques et Caoutchouc

Comitato Europeo Costruttori Macchine per Materie Plastiche e Gomma

See you again

http://www.euromap.org

