
EUROMAP 63 Data Exchange Interface

Version 1.05a
July, 2000
(59 pages)

The recommendation under this cover has been prepared by the

Technical Commission of EUROMAP and SPI (The Society of the

Plastics Industry, USA-Washington, DC)

In this document, the American spelling is used.

In the U.S. an identical text of EUROMAP 63 is published as an SPI
document.

 Copyrigth by EUROMAP

EUROMAP – SPI Data Exchange Interface V1.05a, Page 2

Table of Contents

1. INTRODUCTION ...4

1.1. EUROMAP - SPI COMMITTEE ON COMMUNICATION PROTOCOL ..4
1.2. FILE BASED COMMUNICATION (FBC)...5
1.3. MANUAL ORGANIZATION ..6

2. CCP PROTOCOL DEFINITION ...6

2.1. OSI SEVEN LAYER MODEL..6
2.2. LAYER 1, PHYSICAL LAYER ...7

2.2.1. CCP File Based Communicaton (FBC) Physical Standard..7
2.3. LAYER 2, DATA LINK LAYER ...7

2.3.1. CCP FBC Data Link Standard..7
2.4. LAYER 3, FBC NETWORK LAYER ..7

2.4.1. CCP FBC Network Standard ..7
2.5. LAYER 4, FBC TRANSPORT LAYER ..7

2.5.1. CCP FBC Transport Standard..9
2.6. LAYER 5, SESSION LAYER ...9

2.6.1. CCP FBC Communication Sessions..9
2.6.2. Session Request and Response File (stream) Formats ..10

2.6.2.1. Session Request File Format .. 10
2.6.2.2. Session Response File Format.. 12
2.6.2.3. Session Request File Commands and Responses .. 12

2.7. LAYER 6, PRESENTATION LAYER ...13
2.7.1. CCP FBC Presentation Layer...13

2.7.1.1. Physical Data Formats.. 13
2.7.1.2. Presentation Request and Response Command Files.. 14

2.7.1.2.1. Presentation Request and Response File Formats .. 14
2.7.1.2.2. Presentation Request File Format ... 14
2.7.1.2.3. Presentation Response File Format ... 15
2.7.1.2.4. Presentation Requests and Responses ... 16

2.8. LAYER 7, APPLICATION LAYER..16
2.8.1. Device specific command tokens and formats ...18
2.8.2. File formats..20

2.8.2.1. Report Response File Format ... 20
2.8.2.2. Event Log Response File Format.. 21

2.8.2.2.1. Machine Alarms Event Protocol File Format... 22
2.8.2.2.2. Current Machine Alarms Event Protocol File Format ... 22
2.8.2.2.3. Overall Change Event Protocol File Format ... 22

2.8.2.3. GETINFO Response File Format.. 23
2.8.2.4. GETID Response File Format .. 23
2.8.2.5. General Information File Format .. 24

2.8.3. Event Log Types and Token..25

3. APPENDICES ...25

3.1. ABBREVIATIONS AND ACRONYMS ..25
3.2. WHITE SPACES AND SPECIAL CHARACTERS ..26
3.3. COMMUNICATION SESSION FLOW...27

3.3.1. Session Request Flow Chart ...27
3.3.2. Session Replay Flow Chart...28

3.4. COMMUNICATION PRESENTATION FLOW ..29
3.5. ERROR CLASS CODES ..30
3.6. SESSION LAYER ERROR CODES ..30
3.7. SESSION REQUEST COMMANDS AND RESPONSES ...31

3.7.1. Session Connection Verification Command ..31
3.7.2. Session Execute Command ...31

3.8. PRESENTATION LAYER ERROR CODES..33

EUROMAP – SPI Data Exchange Interface V1.05a, Page 3

3.9. PRESENTATION REQUEST AND RESPONSE PARAMETERS...34
3.9.1. File Specification Parameter..34
3.9.2. Time Specification Parameter ..34
3.9.3. Date Specification Parameter...35
3.9.4. Comparison Operator Specification ...35
3.9.5. Constant Parameter Specification ..35
3.9.6. Application Parameter Specification ..36
3.9.7. Start Specification Parameter...36
3.9.8. Stop Specification Parameter ...37

3.10. PRESENTATION REQUEST COMMANDS AND RESPONSES ...38
3.10.1. Presentation Job Request Command...38
3.10.2. Report Generation Request Command..38
3.10.3. Event Log Request Command ...43
3.10.4. Abort Request Command ..44
3.10.5. Upload Request Command ...44
3.10.6. Download request Command..45
3.10.7. GETINFO request Command..46
3.10.8. GETID request Command ..48
3.10.9. SET request Command ...48

3.11. IMM DEVICE TOKEN SUMMARY ..50
3.12. TOKEN SUMMARY FOR OTHER DEVICES...54
3.13. UNIT SUMMARY ..54
3.14. APPLICATION EXAMPLES ...55

3.14.1. Recording of Process Log...55
3.14.2. Recording of Alarm Log ...56
3.14.3. Recording of Process Log for a Status View ...56
3.14.4. Recording of Alarm Log for a Status View..57
3.14.5. Download a Data Set (Example 1)..57
3.14.6. Download a Data Set (Example 2)..58
3.14.7. Setting Several Parameters...58
3.14.8. GETID Command...59

List of Tables and Figures

Figure , File Based Communication ..5
Figure , OSI Seven Layer Model ...6
Table , FBC Physical Data Formats..13
Table , Presentation Layer White-Space characters...26
Table , Type Token Group ...18
Table , Unit Token Group..19
Table , Function Token Group...19
Table , Miscellaneous Token Group ..20
Figure , Session Request Flow Chart ...27
Figure , Session Replay Flow Chart ..28
Table , Error Class Codes ...30
Table , Session Layer Error Codes ..30
Table , Presentation Layer Error Codes ..33
Table , Machine Status Tokens ..51
Table , Barrel Temperature Tokens ...52
Table , Mould Temperature Tokens ...52
Table , Miscellaneous Temperature Tokens ...53
Table , Process Monitoring Parameter Tokens ..54
Table , Physical Units Used in Injection Moulding Machines..55

EUROMAP – SPI Data Exchange Interface V1.05a, Page 4

1. Introduction

1.1.EUROMAP - SPI Committee on Communication Protocol

The widespread use of microprocessor controls in industrial equipment allows data
to be collected and transmitted to central computer systems. Since the mid-eighties, there
have been efforts, largely driven by the automotive industry, to establish computer integrated
production plants. The aim of these efforts is to increase the transparency of the production
processes and thus to obtain information rapidly concerning throughput, quality and
utilization.

The benefits of networked systems are also important to the plastics industry; thus in
1992 the EUROMAP 15 standard for injection molding machine communication was
established. Likewise, in 1994, the SPI organization developed standards to encompass
similar communication systems in the SPI Phase II Communication Protocol.

Nevertheless, it has not been possible to establish either protocol widely. Because of
the rapid developments in computer technology, certain transfer techniques quickly became
obsolete and unacceptably expensive. In addition, the compatibility between the various
manufacturer’s products was many times uncertain. Thus, the implementation and servicing
of the existing protocols has led to much expense on the part of machinery manufactures as
well as end processors.

The joint EUROMAP - SPI Committee on Communication Protocol (CCP) was
assigned the task to standardize a protocol for use by plastic machinery manufacturers. The
committee was charged to develop a flexible concept, by use of simple communication
structures, which establishes an economical host computer interface using standard data
processing hardware and software. The committee adopted the following rules to govern the
creation of this protocol:

• The protocol will be developed using as many existing standards and protocols as
possible.
This rule was designed to help save in development time and add credibility to the final
protocol. Also, it will aid in developer and end user understanding as there are existing
books and reference documents which describe the various standards and protocols.

• The protocol shall use existing and readily available technology and shall not
interfere with the normal operations of the processing equipment..
As many of the manufacturers had already developed various equipment with
communication capabilities. the protocol had to be able to be retrofitted in existing
equipment designs. The addition of the communication hardware and software must not
impose any impact on the main operating functionality of the processing equipment.

• The purpose of the protocol is to provide centralized setup and monitoring of various
plastics processing equipment from a centralized computer system. The protocol shall
not be used for any function necessary for the safe operation of equipment nor
perform any direct control of equipment.
The central computer would not actually control the equipment, but would allow the
central computer to set a machine's operating parameters and then monitor it's process
data. No direct control functions or function necessary for the safe operation of
equipment will be provided by the protocol. At no time will any control or safety
function of equipment be dependent on the operation of the communication network.

EUROMAP – SPI Data Exchange Interface V1.05a, Page 5

1.2.File Based Communication (FBC)

In order to satisfy the general requirements adopted by the committee, a File Based
Communication (FCB) model has been created. This model can be described using the
following structure:

Figure , File Based Communication

As can be seen from the schematic representation, the file based data exchange interface
provides a standard method for different application programs to access information from
various machines regardless of manufacturer or type of control systems utilized.

The interface itself is accomplished using ASCII files. An underlying network file system,
whose type and mechanisms are outside the scope of this document, is responsible for
providing access to shared network file servers. Files termed “Job Files” are created to
identify the information to be communicated with a particular machine. The machine will
process this job file to both receive information as well as identify information to be written
by the machine to a “Response File”. Within these files, commands and response are written
using a simple syntax based on ASCII command tokens. For example, a job file for sending
a complete set of machine setup parameters to a machine might have the following
appearance (keywords in capital letters):

JOB test RESPONSE = test.log; // Specification of the data set
UPLOAD “\\sv1\vol1\data\test”// Use data from data set „test“
START TIME>= 10:05:00; // Start upload at 10:05

This method allows the utilization of sophisticated and complex software applications to
access machine information by automatically creating job files and processing returned
response files as well as the use of a simple text editor to manually create job files and view
returned response files. Further, this method allows the creation of a complete process
monitoring system using standard data processing (personal computer) components. For
example, a word processing program can be used to created job request files and a
spreadsheet program can be used to analyze the returned machine information. In addition,
existing process monitoring systems can be easily adapted to use this file based
communication method in place of costly, slow and unreliable direct serial connections.

File based data exchange interface

IMM
Manufacturer

1

Application
program 1

Application
program 2

Application
program 3

Standard
EDP world

IMM world IMM
Manufacturer

2

IMM
Manufacturer

n

EUROMAP – SPI Data Exchange Interface V1.05a, Page 6

1.3.Manual Organization

The CCP Version 1.00 manual was organized based on the Open Systems
Interconnection (OSI) 7 Layer Model. This model provides a basis for developing and
discussing the hierarchical layers of communication protocols. The model provides for
different standards and protocols for each layer allowing the CCP Protocol to be enhanced in
the future to take advantage of newer technologies while maintaining support of existing
procedures.

The CCP Protocol Definition section describes the standards, procedures, and
protocols defined or required for each of the seven OSI model layers. Each description
provides a reference to the existing standards on which the layer is based along with a
description of it's procedures. It is intended that this document serve as an overview of the
various specifications and standards, however, some of the referenced documents may be
required for protocol understanding and implementation. Where applicable, multiple
(mutually exclusive) standards are presented which can be used in different CCP Protocol
applications.

The document is concluded with various appendices which provide additional
information concerning the protocol.

2. CCP Protocol Definition

2.1.OSI Seven Layer Model

The OSI Seven Layer Model is used to describe and design communication
protocols. The model was developed in 1984 by the International Organization for
Standardization. The model breaks the overall communication process into 7 hierarchical
layers. Standards, procedures, and protocols are then defined for each layer. The
compilation of standards for each layer forms an overall computer protocol application. The
OSI model was chosen to describe the CCP Protocol as it has become the most common
framework used to discuss communication protocols.

Figure , OSI Seven Layer Model

Application

Presentation

Session

Transport

Network

Data Link

Physical

EUROMAP – SPI Data Exchange Interface V1.05a, Page 7

The joint EUROMAP - SPI CCP documentation defines only the top three layers of the
communication model. The lower four layers are left for definition by actual
implementations of the protocol. An underlying network system which provides Network /
Remote File System services is expected to exist at these layers. These services are required
to locate and open files, detect file changes, lock files from shared access, read and write data
to files and close files. Guidelines and recommendations for the implementation of these
lower layers are offered.

2.2.Layer 1, Physical Layer

Layer 1 of the OSI model is the Physical Layer. This layer consists of the electrical
and mechanical specifications of the communication link. The layer defines mechanical
interface specifications, electrical bit representation specification, bit stream procedures, and
transmission activation, maintenance, and deactivation procedures. The collection of these
procedures forms the Physical Layer.

2.2.1. CCP File Based Communicaton (FBC) Physical Standard

This layer is not specifically defined by this protocol. However this protocol does
require the existence of this layer in any actual implementation. Examples of
specifications at this layer suitable to support the CCP upper layers are twisted pair
and 10BaseT as defined by the IEEE 802.3 (Ethernet) protocol.

2.3.Layer 2, Data Link Layer

The OSI Data Link Layer defines the methods and procedures used to establish,
maintain, and release data link connections. It also specifies the network topology, line
discipline, flow control, and error control.

2.3.1. CCP FBC Data Link Standard

This layer is not specifically defined by this protocol. However this protocol does
require the existence of this layer in any actual implementation. It is assumed that
the underlying network system in place used to implement the network / remote file
system provides these services. An example of a standard which satisfies the
requirements at this layer is CSMA/CD.

2.4.Layer 3, FBC Network Layer

The OSI Model Network Layer is responsible for establishing, maintaining and
terminating network connections. The layer provides the mechanisms to communicate with
connected networks and sub-networks.

2.4.1. CCP FBC Network Standard

This layer is not specifically defined by this protocol. However this protocol does
require the existence of this layer in any actual implementation. It is assumed that
the underlying network system in place used to implement the network / remote file
system provides these services. An example of a standard which satisfies the
requirements at this layer is TCP/IP.

2.5.Layer 4, FBC Transport Layer

EUROMAP – SPI Data Exchange Interface V1.05a, Page 8

The OSI Model Transport Layer is responsible for transferring data between the
upper and lower layers of the OSI model. The layer prevents the upper layers from requiring
details on how data is communicated by the lower layers.

EUROMAP – SPI Data Exchange Interface V1.05a, Page 9

2.5.1. CCP FBC Transport Standard

This layer is not specifically defined by this protocol. However this protocol does
require the existence of this layer in any actual implementation. It is assumed that
the underlying network system in place used to implement the network / remote file
system provides these services. An example of a standard which satisfies the
requirements at this layer is TCP/IP.

2.6.Layer 5, Session Layer

The OSI Model Session Layer provides a variety of services and functions which are
used by the application layer to access the communication network. Such services include
the establishment of session connections, data exchange, data synchronization, semaphore
processing, and other functions.

2.6.1. CCP FBC Communication Sessions

The EUROMAP - SPI Data Exchange Interface relies on the Session Layer
to initiate communication sessions. Communication sessions are initiated by
placing a Session Request file in a particular machine’s Session Directory. The
location of the Session Directory is specified in the Machine Initialization file. Each
machine will define the maximum number of communication sessions that can be
activated at a time (MaxSessions). This value is documented in the Machine
Initiation file as well as returned as a response to the GetInfo application level
request. The MaxSessions value is used to form the Session Request File name as
follows:

SESSnnnn.REQ

Where

SESS – the ASCII characters “SESS”
nnnn – an open Session Number. The number is a four character ASCII numeric
text string and is valid from ‘0000’ MaxSessions-1. For example, if a machine
reports MaxSessions as 4, SESS0000.REQ, SESS0001.REQ, SESS0002.REQ and
SESS0003.REQ are the only valid Session Request File names. An application must
first search the Session Directory for an available / open Session Number. If all
valid session numbers are already taken (al valid Session Request files exist in the
directory), an error should be reported. Otherwise, the application should use the
first available Session Number in the formation of the Session Request file name.
.REQ – the file extension .REQ to indicate it is the Session Request file.

Once a Session Request file is created in the Session Directory, the
application relinquishes control of the file. The responder (machine), upon
detection of the new Session Request file, will open the file and begin to process the
Session Request Commands. As the commands are processed, session layer
response information is written to a Session Response file. This file is created using
the same base name as the Session Request file but with an extension of “.RSP”.
The file is created in the same directory location as the Session Request file.

Session Request Files contain Session Request Commands. These
commands are used to initiate various communication procedures and functions.
The commands consist of Session Request Command Tokens and appropriate
parameters. The responder will execute each Session Request Command in order,
writing acknowledgement information to the Session Response File. If a session
request command is a valid command and is executed by the responder, a positive

EUROMAP – SPI Data Exchange Interface V1.05a, Page 10

acknowledgment is written to the session response file. If, for any reason, a session
request command cannot be executed by the responder, an appropriate negative
(error) acknowledgment is written to the session response file.

Once all Session Request commands have been processed by the responder,
the Session Request File is deleted by the responder and the Session Response File is
closed. The original requestor, upon detection of the deleted Session Request File
and closed Session Response File, can review the response file for session command
execution conformation. When complete, the requestor deletes the Session
Response File and the communication session is considered closed. The Session
Number used by the completed communication session is once again open and
available for use.

Note that session communication requests are processed immediately
(within the session request response time) by the responder and are then terminated.
Session requests do not remain active over time. However, presentation and
application layer requests may remain active after the initiating session layer request
is processed and terminated. It is the responsibility of those layers to provide the
appropriate synchronization and termination services if such capabilities are
provided.

Appendix 3.3, Communication Session Flow, provides a flow chart of the
communication session process.

2.6.2. Session Request and Response File (stream) Formats

Both session request and response files are ASCII based text files. The files
consist of command tokens delimited by white-space.

Definitions see at appendix “White Spaces and Special Characters”.

2.6.2.1. Session Request File Format

All session request files are ASCII based text files. Commands are
stored as single language tokens. The basic command format is as follows:

{Session Command Identifier} {Request Command} {Parameters} ;

where

• All keywords are written in capital letters and the interpretation is
casesensitive

• Session Command Identifier - a unique 8 character code which is used
to identify the communication session request. The code must be
unique within this session request file. The Session Identifier is
terminated by white space. Typically, this code is set as an 8 character
ASCII numeric text string starting with “00000000”, “00000001”, etc.

• Request Command - the session request command token of the
command to be processed. The Request Command is terminated by
white space.

• Parameters - session command dependent parameter tokens
• ; - the end of session command token

 The Session Command Identifier token is used to uniquely identify
a communication session command. The token is created by the requester
and is used when a session request command is issued. The responder uses

EUROMAP – SPI Data Exchange Interface V1.05a, Page 11

this token when writing the request acknowledgment information in the
session response file.

EUROMAP – SPI Data Exchange Interface V1.05a, Page 12

 2.6.2.2. Session Response File Format

 All session response files are ASCII based text files. Responses
are stored in one of the following formats:

 {Session Command Identifier} PROCESSED {Response Information} ;
 {Session Command Identifier} ERROR {class}
 {nnnnnnnn} {Error Description} ;

 where

• Session Command Identifier - the unique 8 character code which was

specified by the requester and is used to identify the communication
session request being responded to. The Session Identifier is terminated
by a white space.
If the Command Identifier is not valid, in the response file will be
written “????????” instead of the Command Identifier.

• PROCESSED - the keyword PROCESSED indicating that the request
was processed by the responding station (a positive acknowledgment).
Following this keyword is any request command specific information.
The PROCESSED keyword is terminated by a white space.

• ERROR - the keyword ERROR indicating that the request was not
processed by the responding station (a negative acknowledgment). The
ERROR response contains the following additional information:

 class - the 2 character error class code. Errors detected and

generated at the session layer are assigned the class 05
(represented in ASCII format). If the session layer detects an
error from a lower layer service it will report that service’s
error class and information if possible. Errors detected and
generated at the presentation and application layers must
provide the appropriate class code and error information. The
class is terminated by a white space.

 nnnnnnnn - the session response error code represented as a

numeric value in ASCII format with leading zeroes to fill to 8
characters. Appendix 3.3, Session Request Commands and
Responses, provides a detailed description of all session
response error codes. The error code is terminated by a white
space.

 Error Description - max. length 255 character string in quotes,
padded with spaces (SPACE) if necessary, which describes the
error condition. Any white-space characters within the string
are considered as part of the string.

• ; - the end of session command token

 The Session Command Identifier token of the acknowledgment
command must be that which was originally specified by the requester in
the request command.

 2.6.2.3. Session Request File Commands and Responses

 Session Request File Commands are used by the requesting
network station to initiate a communication session. The commands are
initiated by the presentation and application layers via session layer service

EUROMAP – SPI Data Exchange Interface V1.05a, Page 13

calls. These service calls provide the basic operations of connection
verification, configuration verification, and presentation and application
layer specific command execution. Each command also specifies
appropriate response information, if any, to be provided by the responder.
Appendix 3.3, Session Request Commands and Responses, provides a
complete list of all session request commands, responses, and formats.

 2.7.Layer 6, Presentation Layer

 The OSI Model Presentation Layer is concerned with the transfer syntax used
between communicating systems. The layer requires that communicating devices determine
and use a compatible transfer syntax to exchange application data.

 2.7.1. CCP FBC Presentation Layer

 This CCP Presentation Layer is based on a File Based Communication
(FBC) network architecture. The layer is dependent on the CCP FBC Session Layer
services but is otherwise independent of lower layer functionality. The layer is
responsible for defining the basic data formats and overall data representation
syntax.

 2.7.1.1. Physical Data Formats

 The FBC presentation layer specifies various data formats for
storing information. Different data formats are used according to the
requirements of the specific commands. The following general rules apply
to all specified data formats:

• All multi-byte data is represented in ASCII
• Fixed length character strings are padded with SPACE characters to

fill the entire data field.

 The following table defines the various FBC data formats.

 Data Type Byte

 Length
 Numeric
 Range

 Description

 CHAR 1 n/a Single character data.
 (Unicode not supported).

 FSTRING(n) n n/a Fixed length character string, space
(SPACE) padded to (n) characters.

 VSTRING(n) n n/a Variable length string, <= n
characters. The string is delimited
with the quote characters (“”). A
quote character within a string is
represented with two quote
characters in sequence (““)

 NUMERIC(n) n,
 where
 n <= 16

 n/a Representation in the following
standard numeric formats:
 [-]mmm (integer value)
 [-]mmm.ddd (float value)
 [-]m.ddde[±]xx, [-]m.dddE[±]xx
(float value in scientific format)

 Table , FBC Physical Data Formats

EUROMAP – SPI Data Exchange Interface V1.05a, Page 14

 2.7.1.2. Presentation Request and Response Command

Files

 The CCP Presentation Layer provides command files for
execution of application and presentation layer functions. The application
layer combines presentation layer commands and data formats with
application layer specific data values to form a command file for execution
by a network station. The command file is stored on a network storage
device accessible by the remote network station (machine) and then is
transferred to the network station via the session layer EXECUTE service.

 The responding station, upon detection of the SESSION level
EXECUTE request, passes the EXECUTE information to its presentation
layer for processing. The responder’s presentation layer processes the
command file, passing all application layer information to that layer. Once
processing of the presentation and application layer information is
complete, the responding presentation layer returns an appropriate positive
or negative acknowledgment to the underlying session layer to complete the
communication request.

 All presentation layer command files specify a corresponding
response file for various response information to be stored by the
responding presentation layer. The response file will contain response
information for each command which is processed by the presentation and
application layers.

 2.7.1.2.1. Presentation Request and Response File

Formats

 Both presentation request and response files are ASCII
based text files. The files consist of command tokens delimited by
white-space. The following characters are considered white-
space:

Definitions see at appendix “White Spaces and Special
Characters”.

 2.7.1.2.2. Presentation Request File Format

 All presentation request files are ASCII based text files.
Commands are stored as single language tokens. The basic
command format is as follows:

• {Request Command} {Parameters} ;

 where

• All keywords are written in capital letters and the

interpretation is casesensitive
• Request Command - the presentation request command token

of the command to be processed. The request command is
terminated by white space.

• Parameters - presentation command dependent parameter
tokens. The parameters are separated by white space.
Note: If a parameter (IMM Token) is not supported by the

EUROMAP – SPI Data Exchange Interface V1.05a, Page 15

machine, the syntax parser throws the error 00000006
Unknown REPORT parameter.

• ; - the end of command token

The responding presentation layer processes the
command file command by command. The first command of
every command file is the JOB command. This command
provides information to the responder required to execute the
request file. Included in this command is the file specification of
the command response file. This file is used to store response
information to each session request command and is created by the
responder (with any existing file information being destroyed)
when the JOB command is executed. As the request commands
are processed, appropriate response information is written to the
response file for each command. Once all request file commands
have been processed, the response file is closed and a positive
acknowledgment is returned to the session layer. The request is
now complete at the presentation layer.

A negative acknowledgment is returned to the session
layer if one or more of the following conditions are true:

1. The responder is unable to locate, open, or read from the
request command file as specified by the session layer
EXECUTE command.

2. The request command file cannot be executed at this time (for
any reason).

3. The JOB command was not the first request file command or
the command syntax was invalid.

4. The response file cannot be created or written to by the
responder.

Otherwise, a positive acknowledgment is returned to the
session layer. Note that a positive acknowledgment only indicates
that the file specified by the session layer EXECUTE request was
processed and a corresponding presentation layer response file was
created. It does not indicate that the responder was able to process
all presentation or application layer information within the
presentation layer request file. All presentation and application
specific command response information is stored within the
presentation layer response file.

2.7.1.2.3. Presentation Response File Format

All presentation response files are ASCII based text files.
Responses are stored as single language tokens. The basic
response format is one of the following:

COMMAND {n} PROCESSED {Command Response}
{date_spec} {time_spec};

COMMAND {n} ERROR {class}
{xxxxxxxx} {Error

Description}
{date_spec} {time_spec};

where

EUROMAP – SPI Data Exchange Interface V1.05a, Page 16

• COMMAND - the keyword COMMAND which indicates the
start of a command response. The COMMAND keyword is
terminated by white space..

• n - the request file command number. The commands are
sequentially numbered, starting with 1, as they are executed.
The command number is used to synchronize requests and
responses. The command number is terminated by white
space.

• PROCESSED - the keyword PROCESSED if the command
was processed by the responder. Following this keyword is
any command specific response data. The PROCESSED
keyword is terminated by white space.

• ERROR - the keyword ERROR if the command was not
processed by the responder. The ERROR response contains
the following additional information (with each being
terminated by white space):

• class - the 2 character error class code. Errors
detected and generated at the presentation layer are
assigned the class 06 (represented in ASCII format).
Errors detected and generated at the application layer
must provide the appropriate class code.

• xxxxxxxx - the presentation response error code.
Appendix, Presentation Request and Response
Commands, provides a detailed description of all
presentation response error codes.

• Error Description - a VSTRING(255) string which
describes the error condition in quotes.

• date_spec - date of occurrence (separated by white space).
• time_spec - time of occurrence (separated by white space).
• ; - the end of response token

 2.7.1.2.4. Presentation Requests and Responses

 Presentation Requests are issued to perform various
presentation layer services using information supplied by the
application layer. These services include reading application layer
information, writing application layer information, and executing
application layer functions. The presentation layer handles the
common command execution processing while the application
layer provides and processes the actual information.

 Each presentation layer request defines its syntax
according to its specific requirements. Where required,
application layer data is identified. The format of the expected
response information is also specified by each presentation request
command. Appendix 3.8, Presentation Request and Response
Commands, provides a detailed description of all request
commands and responses.

 2.8.Layer 7, Application Layer

 The OSI Model Application Layer is the topmost layer of the model. The main
function of this layer is to allow the exchange of information by distributed application

EUROMAP – SPI Data Exchange Interface V1.05a, Page 17

processes. It is at this layer that all underlying layer usage requirements are defined to form
a complete protocol.

EUROMAP – SPI Data Exchange Interface V1.05a, Page 18

 2.8.1. Device specific command tokens and formats

 The following conventions have been developed to help with the naming of
command data tokens. These conventions should be maintained whenever possible.

 Command data tokens are named according to their type, units, function
and miscellaneous additional information. Charts of common abbreviations have
been created for each of the categories named above. The first letter of each
abbreviation is in upper case while all remaining letters are in lower case. An
abbreviation from each category is concatenated to form the full token name. For
example, the token for the maximum machine hydraulic pressure measured during a
cycle would be represented by the following abbreviations:

 Act - for an Actual value (Type Group)
 Prs - for a Pressure value in bar (Units Group)
 Mach - for a Machine (or system) value (Function Group)
 Hyd - for a hydraulic pressure value (Miscellaneous Group)
 Max - for a maximum measurement over a period of time (Miscellaneous
Group)

 The abbreviations are then concatenated to form ActPrsMachHydMax.

 When creating vendor specific tokens outside of the tokens defined by the
committee, the conventions described here should be followed. To identify the token
as a vendor specific token, the at symbol ‘@’ is used as a prefix to the token symbol.

 Wildcards at parameter arrays in JOB files will not be allowed (
i.e.ActTmpBrlZn[*,*]).

 Token
Abbreviatio
n

 Full Token Description

 Set Set Specifies a value set at the machine.
 Act Act Specifies an actual value measured at the

machine.

 Table , Type Token Group

 Token
Abbreviation

 Full
Token

 Units Description

 Cfg Configurat
ion

 n/a Used to specify the configuration or setup
of a function.

 Vol Volume ccm Used to specify a volumetric value.
 Vel Velocity mm/s Used to specify a velocity value.
 Tim Time s Used to specify a time measurement.
 Tmp Temperat

ure
 C Used to specify a temperature

measurement.
 Spd Speed 1/min Used to specify a speed measurement.
 Prs Pressure bar Used to specify a pressure measurement.
 Pwr Power W Used to specify a power measurement.
 Str Stroke mm Used to specify a stroke or linear position

measurement.
 Cnt Count n/a Used to specify a count.
 Fce Force kN Used to specify a force measurement.
 Dia Diameter mm Used to specify the diameter.

EUROMAP – SPI Data Exchange Interface V1.05a, Page 19

 Token
Abbreviation

 Full
Token

 Units Description

 Desc Descriptio
n

 n/a Used to describe something.

 Sts Status n/a Used to specify the active status of a
function.

 Rec Recipe n/a Used to specify the recipe or setup of a
function.

 Table , Unit Token Group

 Token
Abbreviation

 Full Token Description

 Inj Injection Injection function.
 Eje Ejector Ejector function.
 Mld Mold Mold function.
 Clp Clamp Clamping unit function.
 Brl Barrel Barrel function.
 Plst Plasticise Plasticise or Recovery function.
 Scr Screw Screw function.
 Xfr Transfer Transfer, Switch Over, or Cut-off function.
 Cav Cavity Cavity function.
 Hld Hold Hold function.
 Csh Cushion Cushion function.
 Dcmp Decompress Decompress function.
 Mach Machine Machine or System function.
 Cyc Cycle Cycle function.
 Prt Part Part function.
 Job Job Overall job or process function.
 Op Operator Operator function.
 Mat Material Material function.
 Oil Oil Oil function.
 Wtr Water Water function.
 Cab Cabinet Control cabinet function.
 Mlt Melt Melt function.

 Table , Function Token Group

EUROMAP – SPI Data Exchange Interface V1.05a, Page 20

 Token
Abbreviation

 Full Token Description

 Hdev High deviation High deviation limit - based relative to another
token value.

 Ldev Low Deviation Low deviation limit - based relative to another
token value.

 Hlmt High limit High absolute limit.
 Llmt Low limit Low absolute limit.
 Pre Pre Used to specify the before state for functions

which can occur both before and after another
function (such as decompression).

 Pst Post Used to specify the after state for functions that
can occur both before and after another function
(such as decompression).

 Max Maximum Used to specify the maximum value over a
range of values or time.

 Min Minimum Used to specify the minimum value over a range
of values or time.

 Ave Average Used to specify the average of values over a
range or time.

 Spec Specific Used to represent specific pressure.
 Hyd Hydraulic Used to represent hydraulic pressure.
 In In Used to represent the input portion of a

function.
 Out Out Used to represent the output portion of a

function.
 Rej Reject Used to specify a rejected function.
 Lot Lot Used to represent a particular lot or group.
 Nxt Next Used to represent the next item in a group.
 Box Box Used to represent a single collection or group.
 Zn Zone Used to represent a zone of a function.
 Stb Standby Used to represent the standby or alternate

condition of a function.

 Table , Unit Miscellaneous Group

 2.8.2. File formats

 2.8.2.1. Report Response File Format

 Report files are created in response to job file REPORT
commands. The REPORT command is used to generate an application
data report and is described in Section 3.8. The requested application data
is written to Report Response Files.

 All report response files are ASCII based text files. The files
consist of values delimited by the list delimiter LD (see GETINFO request
command) and terminated by the EOL sequence.

 The first line of the response file contains the list of reported tokens:

 {param_id_1} LD {param_id_2} LD{param_id_3} LD ... {param_id_n}
EOL

EUROMAP – SPI Data Exchange Interface V1.05a, Page 21

 where

 {param_id_x} - token which identifies the application layer parameter
(type APPLICATION_PARAMETER).

 All following lines contain the values of the reported parameters:

 {{value_id_1} LD {value_id_2} LD ... {value_id_1} EOL }...

 where

 value_id_x - value of reported parameter, ASCII numeric or ASCII text in
quotes with a maximum of 255 characters (dependent on parameter type).

 2.8.2.2. Event Log Response File Format

 Event Log Response files are created in response to job file
EVENT commands. The EVENT commands are used to generate reports
consisting of asynchronous event type data such as alarms or setpoint
changes (see section 3.9.3, Event Log Request Command). The requested
EVENT data is written to the Event Log Response files.

 All Event Log Response files are ASCII based text files. The files
consist of values delimited by the list delimiter LD (see GETINFO request
command) and terminated by the EOL sequence.

 All responses to Event Log request commands share the same base format
as follows:

 {n} LD {date} LD {time} LD {cycle counter}

 where

• n - the unique number identifying the specific event (numeric value in

ASCII - max. UINT16). The events are sequentially numbered, starting
with 1.

• date - date of event (type DATE_SPEC).
• time - time of event (type TIME_SPEC).
• cycle counter - value of the cycle counter during event (numeric value in

ASCII, type NUM_CONST).

 This base event response format is identified as {base EVENT response} in
subsequent event response file format descriptions.

 Thus, the basic format of all EVENT command responses is as follows:

 {base EVENT response} LD {additional information} EOL} ...

 where

• base EVENT response - the base event response information as

described above
• additional information - this information depends on event type and

may consist of one or more parameters.

EUROMAP – SPI Data Exchange Interface V1.05a, Page 22

 2.8.2.2.1. Machine Alarms Event Protocol File

Format

 The ALARMS event type is used to log alarm events. The
following is the format of the EVENT ALARMS response:

 {{base EVENT response} LD {alarm_set} LD {alarm_number}
LD {alarm_text} EOL} ...

 where

• alarm_set - a single character ASCII numeric value where 0

indicates the alarm is reset or clear and 1 indicates that the
alarm event is set or active.

• alarm_number - a ASCII numeric value indicating the vendor
specific alarm number (type NUM_CONST).

• alarm_text - a description of the alarm, ASCII text in quotes,
max. 255 characters.

 2.8.2.2.2. Current Machine Alarms Event Protocol

File Format

 The CURRENT_ALARMS event type is used to obtain a list of all
currently set or active alarms. The format of the EVENT
CURRENT_ALARMS is the as specified for the EVENT
ALARMS response.

 2.8.2.2.3. Overall Change Event Protocol File

Format

 The CHANGES event type is used to log machine setup parameter
changes as entered by the machine operator.

 For numeric parameter changes, the format of the EVENT
CHANGES response is as follows:

 {{basic response format} LD {param_id} LD {old_val} LD
{new_val} LD {user_name} LD {user_id} LD {reason} EOL} ...

 where

• {param_id} - token which identifies the application layer

parameter (type APPLICATION_PARAMETER)
• old_val - old value of changed parameter, ASCII numeric or

ASCII text in quotes max. 255 characters (dependent on
parameter type).

• new_val - new value of changed parameter, ASCII numeric or
ASCII text in quotes max. 255 characters (dependent on
parameter type).

• user_name - the name of the active operator or user at the time
the parameter was changed, ASCII text in quotes max. 255
characters.

• user_id - the identification number of the active operator or
user at the time the parameter was changed, ASCII numeric.

• reason - the reason of change, ASCII text in quotes max. 255
characters.

EUROMAP – SPI Data Exchange Interface V1.05a, Page 23

 For other types of EVENT CHANGES parameter changes, the
format of the EVENT CHANGES response is as follows:

 {basic response format} LD {text} EOL

 where

• text - a description of the changes parameter, ASCII text in

quotes max. 255 characters.

 For example, if an entire parameter set is loaded, the additional
information might be set to “DOWNLOAD FROM HOST”.

 2.8.2.3. GETINFO Response File Format

 This response file type is used to contain the results of the
GETINFO request command. This command is used to obtain static
information concerning a specific machine. The file consists of ASCII text
strings delimited by the list delimiter LD (see GETINFO request command)
and terminated by the EOC (;) sequence.

 The format of a GETINFO response entry is as follows:

 {{item_id} LD {item_entry} ;} ...

 where

• item_id - token which identifies a GETINFO parameter.
• item_entry - numeric value or text in ASCII (max. 255 character).

 The response file will contain a GETINFO response entry for each defined
GETINFO parameter.

 2.8.2.4. GETID Response File Format

 This response file type contains the results of the GETD request
command. This command is used to obtain a is a list of all supported
parameters of a specific machine. All entries are written in ASCII and
consist of values delimited by list delimiter LD (see GETID request
command) an terminated by the EOC (;) sequence.

 The format of a GETID response entry is as follows:

 {{param_id} LD {type of parameter} LD {integer digits} LD {fractional
digits} LD {write permission} LD {unit} LD {description} ;} ...

 where

• param_id (type APPLICATION_PARAMETER) - token of a defined

parameter {e.g. ActTimCyc or @MyPrivateParameter, see Application
Parameter Specification)

• type of parameter - data type of parameter, one character (A...alpha
numeric, B...Boolean, N...numeric)

• integer digits (type NUM_CONST) - For numeric parameters, this will
be set to the maximum number of digits in the integer portion of the
numeric value. For character string paramters, this entry will indicate

EUROMAP – SPI Data Exchange Interface V1.05a, Page 24

the maximum number of characters used to represent the parameter.
For Boolean values, this will always be set to 1.

• fractional digits (type NUM_CONST) - For numeric parameters, this
will be set to the number of fractional digits used to represent the
parameter. For character and Boolean parameters, this entry is always
0.

• write permission (type NUM_CONST) - If set to 1, this parameter may
be modified by JOB command requests. If set to 0, this parameter may
not be modified using JOB commands.

• unit - ASCII text in quotes, max. 255 characters, describing the units
used to represent the value.

• description - ASCII text in quotes, max. 255 characters, describing the
parameter itself.

 2.8.2.5. General Information File Format

 A General Information File type has been defined to provide a
central access point for application programs to obtain a list of all network
machines along with the location of each machine’s SESSION file path
entry. The file is to be named MACHINE.INI and consists of the following
information:

 List of available machines:

 [MACHINES] EOL
 {{n}={internal_machine_identification} EOL} ...

 SESSION file path entry:

 {[internal_machine_identification] EOL
 SESSIONPATH={path} EOL}...

 MAXSESSIONS={MaxSessions}EOL

 where

• [MACHINES] - section for machine list.
• n - logical machine number (1..n for simple access).
• internal_machine_identification - logical name or number for machine

identification in this file.
• {path} - the network path information representing the location of the

machine’s SESSION file. It can be a relative or absolute path. The path
string is not enclosed with quotation marks.

• MAXSESSIONS= - set to the maximum number of communication
sessions (used in creation of session request file names).

 This file can also be used also for additional manufacture dependent
information. For example, an entry might be made to indicate the type of
underlying network such as TCP/IP or SERIAL.

 The following is an example of a MACHINE.INI file:

 [MACHINES]
 1=MACHINE_1
 2=MACHINE_2
 3=MACHINE_3
 4=MACHINE_4

EUROMAP – SPI Data Exchange Interface V1.05a, Page 25

 [MACHINE_1]
 SESSIONPATH=\\SV1\INTERFACE\MACH1
 MAXSESSIONS=3
 IPADDRESS=128.123.200.103 // manufacture dependent entry

 [MACHINE_2]
 SESSIONPATH=\\SV2\INTERFACE\MACH2
 MAXSESSIONS=2
 IPADDRESS =128.123.200.102 // manufacture dependent entry

 [MACHINE_3]
 SESSIONPATH=\\SV2\INTERFACE\MACH3
 MAXSESSIONS=2
 IPADDRESS =128.123.200.101 // manufacture dependent entry

 [MACHINE_4]
 SESSIONPATH=\\SV1\INTERFACE\MACH4
 MAXSESSIONS=8
 IPADDRESS =128.123.200.100 // manufacture dependent entry

 2.8.3. Event Log Types and Token

 The following event log types have been defined:

• Active machine alarms. The token for the EVENT command for reporting

current active alarms is CURRENT_ALARMS
• Machine alarms event protocol. The token for the EVENT command is

ALARMS
• Overall change event protocol, which contains all changes regarding to setup

parameter, machine state, system state, etc. The token for the EVENT command
is CHANGES.
Note: Only set values are reported. A set value is a parameter with write
permission.

 3. Appendices

 3.1.Abbreviations and Acronyms

 SPI Society of the Plastics Industry Inc.
 EUROMAP European Committee of Machinery Manufacturers for the

Plastics and Rubber Industries
 ASCII American Standard Code for Information Interchange
 OSI Open System Interconnection
 FCB File Based Communication
 CCP Committee on Communication Protocol
 IMM Injection Mould Machine
 LD List delimiter
 EOL End of line
 EOC End of command

EUROMAP – SPI Data Exchange Interface V1.05a, Page 26

 3.2.White Spaces and Special Characters

Character Hex
Value

Description

space 20 Blank space character.
carriage return <cr> 0D Carriage return character.
line feed <lf> 0A Line feed character.
tab 09 TAB character.

Table , Session and Presentation Layer White-Space characters

Comments can be inserted at any point in which white-space is valid.

Purpose Character Description
Comment // Comments are denoted by

two consecutive forward
slashes. All characters
following this sequence to
the end of line (EOL) is
considered comment
information and is to be
ignored by the command
processor (as if white-space)

EOL <cr><lf> or
<cr>

End of line character
sequence

EOC ; End of command
LD , List delimiter

Table , Session and Presentation Layer Special Characters

EUROMAP – SPI Data Exchange Interface V1.05a, Page 27

 3.3. Communication Session Flow

 3.3.1. Session Request Flow Chart

Form Session
Request File

Name

Write Session
Command(s)

Session
Response File

Change?

Store in
Session
Directory

Session Response
Time Period Elapsed?

No

No

Delete Session
Request File

Session
Complete

Yes

Lock Session
Response File

Read Session
Request
Response

Unlock and
Delete Session
Response File

Yes

 Figure , Session Request Flow Chart

EUROMAP – SPI Data Exchange Interface V1.05a, Page 28

 3.3.2. Session Replay Flow Chart

New Session
Request File?

Start Session
Processing

No

Lock Session
Request File

Read Session
Request

Command

Lock Session
Response File

All Commands
Processed?

Command
valid?

Unlock
Session

Request File

Write Negative
Command

Acknowledge

Unlock
Session

Response File

Yes

Yes

No

Can Command
Be Executed?Yes

No
N

Process
Request

Command

Lock Session
Response File

Write Positive
Command

Acknowledge

Unlock
Session

Response File

Yes

Delete Session
Request File

 Figure , Session Replay Flow Chart

EUROMAP – SPI Data Exchange Interface V1.05a, Page 29

 3.4. Communication Presentation Flow

Immediately after reading the request file, <PROCESSED "JOB command"> is
responded, if the syntax of the commands is correct.

The PROCESSED keyword for each other following commands are written after the
command is really processed.. If the command is terminated due to an error, the ERROR
keyword is written as soon as the error occurs. If the command (eg. REPORT with STOP
NEVER) never finishes, the PROCESSED keyword is never written.

This definition allows host computer really to recognize when the command is finished and it
is not necessary to assume a timeout timer.

Figure , Session Request Flow Chart

EUROMAP – SPI Data Exchange Interface V1.05a, Page 30

 3.5. Error Class Codes

 Error information is provided to help identify various problems which may occur.
Error information is classified according to the specific layer in which it was detected. The
following chart identifies the various error classification codes.

 Class Description
 01 Physical layer error codes.
 02 Data link layer error codes.
 03 Network layer error codes.
 04 Transport layer error codes.
 05 Session layer error codes.
 06 Presentation layer error codes.
 07 Generic application layer error codes.
 08 – 99 Application specific error codes (registered by

application type).

 Table , Error Class Codes

 3.6. Session Layer Error Codes

 The following error codes are used by the CCP FBC Session Layer protocol. The
codes are classified as ‘05’ Session layer error codes.

 Code Description
 00000000 No error.
 00000001 No response from network station.
 00000002 Invalid syntax in session request command
 00000003 Unable to create/open JOB response file.
 00000004 Interface was started

 Note: Returned only from the first CONNECT command after the startup of
the network station (machine). It means, that all running jobs, before
shutdown, are lost.

 00000005 Interface is busy.
 00000006 Machine is offline.

 Note: In case of EXECUTE the presentation request file will be rejected.
 00000007 Invalid syntax in presentation request JOB command

 Note: Cant recognize the presentation response file specification
 00000008 -
 00009999

 Reserved

 00010000 -
 99999999

 Open for manufacture specific error codes

 Table , Session Layer Error Codes

EUROMAP – SPI Data Exchange Interface V1.05a, Page 31

 3.7. Session Request Commands and Responses

 The following sections list the Session Request File Commands and Responses.

 3.7.1. Session Connection Verification Command

 Command: CONNECT
 Format: CONNECT;
 Parameters: none
 Example: REQ_0002 CONNECT; // verify connection
 Response Data: Session layer error or completion message
 Example: REQ_0002 PROCESSED;
 Description:

 This command is used to verify the connection between network stations at
the session layer. The requester station writes this command to the
command file and then monitors the response file. The responding station,
upon detecting this new request, processes the request at the session layer by
writing a positive acknowledgment to the response file.

 If the requesting station receives no response within the specified time-out
period the requesting station should delete the session request file, to
prevent the inadvertent processing of not processed session request files. If
the requesting station receives a negative acknowledgment to the request, it
must consider the station connection as invalid and reattempt the request at
a later time. If the requesting station receives a positive response to the
request it can consider the station as connected.

 3.7.2. Session Execute Command

 Command: EXECUTE
 Format: EXECUTE {fspec};
 Parameters:
 Fspec A presentation layer or application layer command file

specification.
 Example: REQ_0003 EXECUTE “\\SV1\VOL1\MACH01\ANY.JOB”;

 // execute command file
 Response Data: Session layer error or completion message
 Example: REQ_0003 ERROR 00000001 Any 255 char

message…;
 - or -
 REQ_0003 PROCESSED;

 Description:
 This command is provided as a service to the presentation or application
layers to request a network station to execute a command file. The
command file itself is an upper layer entity and is meaningless at the
session layer. The responsibility at the session layer is to inform the
appropriate network station of the application layer entity to process.

 The execution request is initiated by writing the execute command to the
session request file. The command must provide an appropriate file
specification of the network resource which contains the application layer
file. This specification must include all information required to identify the
storage device and file such as server name, drive name, directory name,
and file name. The entire file specification must be representable as a
variable length character string which is less than or equal to 255
characters in length.

EUROMAP – SPI Data Exchange Interface V1.05a, Page 32

 The responding network station, upon detecting the execution request, will
present the file specification information to the presentation layer for
processing. If the upper layers accept the command file, it returns a
positive acknowledgment to the session layer. If the upper layers refuse the
command file, a negative acknowledgment is returned to the session layer.

 {fspec} see chapter File Specification Parameter.

EUROMAP – SPI Data Exchange Interface V1.05a, Page 33

 3.8. Presentation Layer Error Codes

 The following error codes are used by the CCP FBC Presentation Layer protocol.
The codes are classified as ‘06’ Presentation layer error codes.

 Code Description
 00000000 No error.
 00000001 Reserved.
 00000002 Reserved.
 00000003 Too many active JOBS.
 00000004 Unable to create/open destination file.
 00000005 Invalid REPORT command syntax.
 00000006 Unknown REPORT parameter.
 00000007 Too many active REPORTS.
 00000008 Invalid EVENT command syntax.
 00000009 Too many active EVENTS.
 00000010 Unknown EVENT token.
 00000011 Invalid ABORT command syntax.
 00000012 Invalid UPLOAD command syntax.
 00000013 Unable to create/open UPLOAD destination directory/file.
 00000014 Invalid DOWNLOAD command syntax.
 00000015 Unable to open DOWNLOAD source directory/file.
 00000016 DOWNLOAD operation denied.
 00000017 Invalid GETINFO command syntax.
 00000018 Invalid GETID command syntax.
 00000019 Invalid SET command syntax.
 00000020 SET operation of parameter denied.
 00000021 SET value out of range.
 00000022 Unknown SET parameter.
 00000023 Unsupported command.
 00000024 Invalid START parameter syntax.
 00000025 Invalid STOP parameter syntax.
 00000026 Application parameter or constant parameter to long.
 00000027 Invalid numeric format.
 00000028 Invalid comparison operator.
 00000029 Invalid time format.
 00000030 Invalid date format.
 00000031 End of command expected.
 00000032 Unknown error.
 00000033 REPORT with the same name and type is already running.
 00000034 EVENT with the same name and type is already running.
 00000035 DOWNLOAD is already running.
 00000036 The specified command to abort, is not active.
 00000037 Error during command processing.
 00000038 -
 00009999

 reserved

 00010000 -
 99999999

 Open for manufacture specific error codes

 Table , Presentation Layer Error Codes

EUROMAP – SPI Data Exchange Interface V1.05a, Page 34

 3.9. Presentation Request and Response Parameters

 Many of the presentation layer request commands and command responses share
various common parameter types and formats. This appendix provides a generic description
of such common parameter formats. Each parameter type is given an appropriate name
which is used by the presentation layer command and response descriptions to reference the
parameter type. The following sections list the various common parameters.

 3.9.1. File Specification Parameter

 Parameter Type: FSPEC
 Format {fspec}
 Data Types

 {fspec} VSTRING(255) - the file specification string
 Example: “\\sv1\vol1\mach03\get_temp.job” // absolute path spec.

“g:\euro\mach01\get_temp.job // absolute path spec.
“mach01\get_temp.job // relative path spec.

 Description:
 This parameter type is used to specify the location of a network file. The
specification string must include all appropriate information required to
locate (or create) the file on the network device. All strings are enclosed
with quotation marks and are delimited to 255 chars.
 In case of a relative path specification the whole path is the result of
concatination of the absolute path of the file where the relative Path is
specified and this relative path. The relative path specification is allowed in
all file types.

 Example: Session request file is located at:
 “\\sv1\vol1\mach03\sess0001.req”.
The file contains:
 00000001 EXECUTE “commands\report.job”
The location of this job is:

“\\sv1\vol1\mach03\commands\report.job ”

 3.9.2. Time Specification Parameter

 Parameter Type: TIME_SPEC
 Format {hh:mm:ss}
 Data Types
 {hh:mm:ss} FSTRING(8) - the time specification string in 24-hour local

time where hh is hours, mm is minutes, and ss is seconds.
 Example: 13:00:00 // specify 1:00PM
 Description:

 This parameter type is used to specify a time value. Time values are
represented as an 8 character fixed length string. Time values are always
represented in 24 hour format. The specification does not specify a time
zone standard (time values are entered according to the local standard
time).

 Valid time specification values are:

• hours from 00 to 23
• minutes from 00 to 59
• seconds from 00 to 59

EUROMAP – SPI Data Exchange Interface V1.05a, Page 35

 3.9.3. Date Specification Parameter

 Parameter Type: DATE_SPEC
 Format {yyyymmdd}
 Data Types

 {yyyymmdd} FSTRING(8) - the date specification string in the specified
format/order where mm indicates the month, dd indicates the
date, and yy indicates the last two digits of the year.

 Example: 19970101 // New Year’s 1997
 Description:

 This parameter type is used to specify a date value. Date values are
represented as an 8 character fixed length string. Date values are always
represented in the specified format.

 Valid date specification values are:

• months from 01 to 12
• date from 01 to 31 (dependent on month)
• year from 0000 - 9999

 3.9.4. Comparison Operator Specification

 Parameter Type: COMPARE_OP
 Format {operator token}
 Data Types

 =
 !=
 >
 <

 >=
 <=

 The = token for equality comparison
 The != token for non-equality comparison
 The > token for “a is greater than b” comparison
 The < token for “a is less than b” comparison
 The >= token for “a is greater than or equal to b” comparison
 The <= token for “a is less than or equal to b” comparison

 Example: ActTimCyc >= 1.0 // check if parm > const
 Description:

 This parameter type is used to specify a comparison operator. The context
of the comparison is dependent on the data types of the items to be
compared.

 3.9.5. Constant Parameter Specification

 Parameter Type: NUM_CONST | STRING_CONST | BOOL_CONST
 Format {type const}
 Data Types

 {num_const}
 {string_const}

 {bool_const}

 A numeric constant.
 A string constant
 A boolean constant

 Example: 127.4 // numeric constant
 “anystring“ // string const
 0 // boolean const

 Description:
 This parameter type is used to specify various constants. The constants are
specified as shown according to the specific data types (see section
Physical Data Formats):

EUROMAP – SPI Data Exchange Interface V1.05a, Page 36

• Numeric values: Integer or fractional values, max. 16 digits exclusive of
decimal point. Data type :NUMERIC(n).

• Alpha numeric: ASCII text in quotes with max. 255 characters. Data
type: VSTRING(255).

• Boolean values : Integer value,. 1 digit, where the value 0 corresponds
to FALSE and a value not 0 corresponds to TRUE. Data type
:NUMERIC(1).

 3.9.6. Application Parameter Specification

 Parameter Type: APPLICATION_PARAMETER
 Format {parm_id}
 Data Types

 {param_id} The token which identifies the application layer parameter,
 length max. 255 characters, case sensitive, no white-spaces.

 Example: ActTimCyc // app parameter ID
 Description:

 This parameter type is used to specify all application layer parameters. The
parameters are specified as tokens which are meaningful at the application
layer. The parameter ID specified must be valid according to the required
data type of the context in which the parameter is used. Each specific
command which requires a parameter ID will specify the appropriate
parameter data type.

 Supported data types (see section Physical Data Formats).

• Numeric values (Data type: NUMERIC(n)): Integer or fractional values,

max. 16 digits exclusive of decimal point.
• Alpha numeric (Data type: VSTRING(255)): ASCII text in quotes with

max. 255 characters.
• Boolean values (Data type: NUMERIC(1)): Integer value,. 1 digit,

where the value 0 corresponds to FALSE and a value 1 corresponds to
TRUE.

3.9.7. Start Specification Parameter

Parameter Type: START_SPEC
Format START [IMMEDIATE |

 TIME>= {time_spec} [{date_spec}] |
 {parm_id} {compare_op} {num_const} |
{string_const}]

Data Types
START The keyword START

IMMEDIATE The keyword IMMEDIATE indicating to start the function
immediately

TIME>= The keyword TIME>= followed by a time specification and
optional date specification to indicate to start the function at or
after the specified time/date. If no date specification is supplied
the current date is used.

{parm_id} A valid application layer parameter ID of a numeric parameter
used to compare against a constant. When the comparison
becomes TRUE the function is started.

{compare_op} A valid comparison operator token.
{num_const} A valid numeric constant.

{string_const} A valid string constant.

EUROMAP – SPI Data Exchange Interface V1.05a, Page 37

Example: START IMMEDIATE // start
now!
START TIME>= 08:00:00 19970101 // start
then!
START ActTimCyc > 2.00 // start if!

Description:
This parameter type is used to specify when to start a function. The
specification allows three basic formats:

1. Start immediately upon execution of the command
2. Start at the specified time and date
3. Start when the specified parameter meets the specified condition

When an application layer parameter ID is specified, it must be of an
appropriate data type to perform a numeric comparison. The responding
session layer will query its application layer for the actual parameter value.

3.9.8. Stop Specification Parameter

Parameter Type: STOP_SPEC
Format STOP [NEVER |

 TIME>= {time_spec} [{date_spec}] |
 {parm_id} {compare_op} {num_const} |
{string_const}]

Data Types
STOP The keyword STOP
NEVER The keyword NEVER indicating that the stop mechanism is not

specified by this clause (the operation will continue forever
until some other operation cancels it)

TIME>= The keyword TIME>= followed by a time specification and
optional date specification to indicate to stop the function at or
after the specified time/date. If no date specification is supplied
the current date is used.

{parm_id} A valid application layer parameter ID of a numeric parameter
used to compare against a constant. When the comparison
becomes TRUE the function is stoped.

{compare_op} A valid comparison operator token.
{num_const} A valid numeric constant.
{string_const} A valid string constant.
Example: STOP NEVER // don’t

stop!
STOP TIME>= 08:00:00 19970101 // stop when!
STOP ActTimCyc > 2.00 // stop if!

Description:
This parameter type is used to specify when to stop a function. The
specification allows three basic formats:

1. Do not stop based on this clause. This format is used when the
function is to run until stopped by some other mechanism.

2. Stop at the specified time and date
3. Stop when the specified parameter meets the specified condition

When an application layer parameter ID is specified, it must be of an
appropriate data type to perform a numeric comparison. The responding
session layer will query its application layer for the actual parameter value.

EUROMAP – SPI Data Exchange Interface V1.05a, Page 38

3.10. Presentation Request Commands and Responses

3.10.1. Presentation Job Request Command

Command: JOB
Format: JOB {name} RESPONSE {fspec};
Parameters:

JOB The keyword JOB indicating the start of the JOB command.
name A VSTRING(16) parameter (without quotation marks) which

contains any character information used to identify the job
request. White-space characters not allowed.

RESPONSE The keyword RESPONSE used to indicate that a presentation
request response file specification string will follow.

fspec A presentation layer file specification which identifies the JOB
response file. The file is created by the responder and all request
command responses are written to this file.

Example: JOB read_mold RESPONSE
”\\sv1\vol1\mach01\any.log”;
 // job specification

Response Data: Presentation layer error or completion message
Example: COMMAND 1 ERROR 06 00000001 “Any 255 char

message…“ 19971212 13:30:59;
 - or -
COMMAND 1 PROCESSED “Any 255 char response
data ...“ 19971212 13:40:31;

Description:
This command is used to specify the start of a presentation job. The
command must be the first command of the presentation request command
file. The command is used to specify the file specification of the file used
to write all job command responses. If the responding station cannot open
the response file, or if a syntax error is detected in the job command,
processing of the job file is aborted and a negative acknowledgment is
returned to the session layer.

Each Job Request File can contain only a single command, excluding the
SET command. Multiple SET commands are valid in a single Job Request
File to allow multiple setpoint values to be set using a single Job Request.

3.10.2. Report Generation Request Command

Command: REPORT
Format: REPORT {name} [APPEND | REWRITE] {fspec} {start_spec}

{stop_spec}
[IF [NOT] {parm_id} [{compare_op} {num_const} |
{string_const} | {bool_const} | CHANGE]]
[CYCLIC [TIME {time_const} | SHOT {num_const}]
[SAMPLES {num_const}]
[SESSIONS {num_const}]]
PARAMETERS
 {parm_id} | TIME | DATE | COUNT
 [,{{parm_id} | TIME | DATE | COUNT }…] ;

Parameters:
REPORT The keyword REPORT indicating the start of the REPORT

command.
name The name of the report. This VSTRING(16) parameter (without

quotation marks) is used to identify the report. The report name

EUROMAP – SPI Data Exchange Interface V1.05a, Page 39

must be unique from that of any other active report at the
responder station.

APPEND The optional keyword APPEND. If specified, the report data is
appended to the end of any existing report file. If omitted, any
existing report file is deleted. Note that this option is not valid
with the REWRITE option. If the response was deleted by the
host, the header line has to written again.

REWRITE The optional keyword REWRITE. If specified, any existing
report data is overwritten with new data each cycle or time
period. If omitted, all new data is added to the end of the report.
Note that this option is not valid with the APPEND option.

fspec A network file specification which specifies the report file. All
reported information is written to this file.

start_spec A valid START specification clause used to indicate when report
data generation will be started.

stop_spec A valid STOP specification clause used to indicate when report
data generation will be stopped.

IF [NOT] The optional keyword IF indicating the start of a conditional
reporting clause. This clause is used to enable or inhibit report
record generation. The IF clause will inhibit record generation if
the conditional clause is FALSE while the IF NOT clause will
inhibit record generation if the conditional clause is TRUE. If
no conditional reporting clause is specified report record
generation is always enabled.

{parm_id}
{compare_op}
{num_const}

{string_const}
{bool_const}

This condition is specified to enable or inhibit report record
generation based on the comparison of an application parameter
value to a numeric constant, to a string constant or a boolean
constant.
If no compare operator is defined, the value of the {param_id}
(type APPLICATION_PARAMETER) is interpreted as a
boolean expression with the following meanings:

{bool_const}: 0 is false and ≠ 0 is true
{num_const}: 0 is false and ≠ 0 is true
{string_const}: empty string (“”) is false and otherwise true

CHANGE This condition is specified to enable or inhibit report record
generation based on whether the specified application parameter
has changed since the last record was recorded. It is up to the
application layer to report whether the parameter has changed
when queried by the presentation layer.

CYCLIC This optional keyword is used to specify whether the report
parameters are recorded only once or whether they are recorded
on a cyclic basis. If the CYCLIC keyword is omitted, the data is
recorded only once. If the CYCLIC keyword is present, the data
is recorded by default every machine cycle. If an optional TIME
or SHOT clause is provided the data is recorded according to the
clause specification. Note that it is up to the application layer to
specify the definition of a “machine cycle”.
Note: One record corresponds to one line in the answer file.

TIME {time const} The optional CYCLIC clause TIME keyword indicating that data
is to be recorded based on a time interval. The time constant
value is specified as a FSTRING(8) in “hh:mm:ss” format.

SHOT
{num_const}

The optional CYCLIC clause SHOT keyword indicating that
data is to be recorded based on a shot count interval. The
numeric constant specifies the number of shots in each recording
interval.

SAMPLES The optional SAMPLES keyword specifies the number of

EUROMAP – SPI Data Exchange Interface V1.05a, Page 40

{num_const} successive recording samples to issue. If omitted, a single
recording sample is issued each cyclic period. If present, the
specified number of samples are recorded each cyclic period.

SESSIONS
{num_const}

The optional SESSIONS keyword specifies the total number of
recording sessions to report. If omitted, recording continues
until the STOP clause activates or the report is aborted. If
specified, recording is stopped once the specified number of
recording sessions have been completed.

PARAMETERS The keyword PARAMETERS indicating the start of the list of
parameters to be reported. At least one parameter is required. A
parameter may be an application layer parameter ID token or a
pseudo parameter token. Each parameter is separated with a
comma (,) character. The order of the parameters specifies the
order of the data in the report records.

{parm_id} The application layer parameter ID token which specifies a
parameter to be monitored.

TIME A pseudo parameter used to specify that the current time be
output as a data value to the report. The time value is output as a
FSTRING(8) string in standard TIME format (HH:MM:SS).

DATE A pseudo parameter used to specify that the current date be
output as a data value to the report. The date value is output as a
FSTRING(8) string in standard DATE format (YYYYMMDD).

COUNT A pseudo parameter used to specify that the current report record
number be output as a data value to the report. Each time a
REPORT command is processed its record counter is reset to 1.
After each data record is recorded to the report file, this counter
is incremented. The COUNT is stored as a ULONG data value.

Example: REPORT REP_CYC
“\\sv4\vol1\mach0\cycdata.rep”
 START IMMEDIATE
 STOP NEVER
 IF NOT ActCntCycRej CHANGE
 CYCLIC TIME 00:00:15
 SAMPLES 5
 SESSIONS 150
 PARAMETERS
 COUNT, TIME, DATE, ActTimCyc, ActCntCyc;

Response Data: Presentation layer error or completion message
Example: COMMAND 2 ERROR 06 00000001 “Any 255 char

message…“ 19971212 13:30:59;
 - or -
COMMAND 2 PROCESSED “Any 255 char response
data ...“ 19971212 13:40:31;

Description:
This command is used to generate an application data report. The
command provides various required and optional parameters which are
used to specify how the report is generated. Each report is given a unique 8
character name used to identify the report. Following the report name is a
file specification string which identifies the file used to contain the report
data. If the APPEND keyword is specified, new report data is appended to
the end of the file. If the APPEND keyword is not specified, any existing
file data is deleted.

Start and stop specification parameters are used to start and stop report data
generation. If the STOP NEVER specification is used, report data
generation will continue until an ABORT command is issued or an error is
detected.

EUROMAP – SPI Data Exchange Interface V1.05a, Page 41

A conditional reporting clause can be specified to indicate when parameter
values are to be recorded. If specified, a conditional clause is used to
compare a parameter to a constant or to detect if a parameter has changed.
It is up to the application layer to provide these functions. If no conditional
reporting clause is provided parameter recording is always enabled.

Data can be recorded in once-only mode or cyclic mode. The default once-
only mode will record the data in a single session and then terminate
(regardless of any STOP clause). The CYCLIC keyword is used to specify
cyclic mode recording. The recording can be based on time or a shot/cycle
count. When based on time, recording is started each time the specified
time interval expires. When based on shot/cycle count, recording is started
each time the specified number of shots are completed.

The optional SAMPLES keyword is used to specify the amount of
parameter samples to be recorded each recording session. By default, a
single sample of each parameter is recorded. If the SAMPLES keyword is
used, the specified number of samples are recorded each session. Each
sample is recording at the completion of a machine shot/cycle. Note that it
is up to the application layer to define what a shot/cycle is.

The optional SESSIONS keyword is used to specify the total number of
recording sessions to process. If omitted, recording will continue until any
STOP clause activates or the report is aborted. If specified, recording is
stopped if the STOP clause activates, the report is aborted, or the specified
number of sessions are recorded (whichever occurs first).

The PARAMETERS keyword is used to specify the start of the recording
parameter list. This list consists of application layer parameter ID tokens
and the special pseudo tokens TIME, DATE, and COUNT. Each
parameter is separated by a comma. The last parameter in the list is ended
with the command end character (;) (which also terminates the REPORT
command). Each recording session, the application supplies the parameter
data values for recording.

Parameters are recording in the same order as specified in the
PARAMETERS list. Parameter values are recorded in the appropriate data
formats as defined by the session layer and set by the application layer.
Each value is separated with a comma (,) character. The last value in the
recording list is terminated with an EOL sequence.

CYCLIC SHOT 10
SAMPLES 2
SESSIONS 20

0 1 10 11

--------- 0
--------- 1
--------- 10
--------- 11
 :
--------- 190
--------- 191Answer File

EUROMAP – SPI Data Exchange Interface V1.05a, Page 42

Figure , CYCLIC Example Flow Chart

EUROMAP – SPI Data Exchange Interface V1.05a, Page 43

3.10.3. Event Log Request Command

Command: EVENT
Format: EVENT {name} {type} [APPEND | REWRITE] {fspec}

{start_spec} {stop_spec};
Parameters:

EVENT The keyword EVENT indicating the start of the Event Log
request.

name The name of the event. This VSTRING(16) parameter (without
quotation marks) is used to identify the event. The event name
must be unique from that of any other active event at the
responder station.

type A token which specifies the type of event to log. The actual
event types are specified at the application layer.

APPEND The optional keyword APPEND. If specified, the event data is
appended to the end of any existing event file. If omitted, any
existing event file is deleted.

REWRITE The optional keyword REWRITE. If specified, any existing
report data is overwritten with new data each cycle or time
period. If omitted, all new data is added to the end of the report.
Note that this option is not valid with the APPEND option.

fspec A network file specification which specifies the event file. All
reported information is written to this file.

start_spec A valid START specification clause used to indicate when event
data generation will be started.

stop_spec A valid STOP specification clause used to indicate when event
data generation will be stopped.

Example: EVENT myEventAlarms ALARMS APPEND
“\\sv1\vol1\mach0\log\mach0.alr”
 START IMMEDIATE
 STOP TIME>= 08:00:00;

Response Data: Presentation layer error or completion message
Example: COMMAND 71 ERROR 06 00000001 “Any 255 char

message…“ 19971212 13:30:59;
 - or -
COMMAND 71 PROCESSED “Any 255 char response
data ...“ 19971212 13:40:31;

Description:
This command is used to generate an event log. The command differs from
the REPORT command in that it is designed to log a single type of data
which occurs as an asynchronous event. The command provides
parameters to specify what type of event is to be logged, when to start event
logging, and when to stop event logging.

The type of event to log is specified using an application layer event ID
token. The token is passed to the application layer to register the event for
logging. When an event occurs, the application layer must pass this
parameter ID, along with the event record data, to the presentation layer for
recording to the event log file. The actual types of events supported, along
with the type and format of the event record data, is defined by the specific
application layers.

Following the event type is a file specification string which identifies the
file used to contain the event log data. If the APPEND keyword is
specified, new event data is appended to the end of the file. If the APPEND
keyword is not specified, any existing file data is deleted at the start of
event logging.

EUROMAP – SPI Data Exchange Interface V1.05a, Page 44

Start and stop specification parameters are used to start and stop event data
generation. If the STOP NEVER specification is used, report data
generation will continue until an ABORT command is issued, command
request file is deleted or an error is detected.

3.10.4. Abort Request Command

Command: ABORT
Format: ABORT

 ALL [JOBS | REPORTS | EVENTS] |
 JOB {name} |
 REPORT {name} |
 EVENT {name} ;

Parameters:
ABORT The keyword ABORT indicating the start of the Abort request.

ALL
[JOBS |

REPORTS |
EVENTS]

The keyword ALL is used to abort one or more functions at the
same time. When used alone, all active jobs (excluding the
current job executing this command), reports, and events are
aborted. When used with the keywords JOBS, REPORTS, or
EVENTS, all active operations of the specified type are aborted.

JOB {name} The keyword JOB indicating that a JOB is to be aborted. The
{name} data must be the name specified in the JOB command of
the job to abort.

REPORT {name} The keyword REPORT indicating that a REPORT is to be
aborted. The {name} data must be the name specified in the
REPORT command of the report to abort.

EVENT {name} The keyword EVENT indicating that an EVENT is to be
aborted. The {name} data must be the event name specified in
the EVENT command of the event log to abort.

Example: ABORT REPORT REP_CYC; // abort the report

Response Data: Presentation layer error or completion message
Example: COMMAND 9 ERROR 06 00000001 “Any 255 char

message…“ 19971212 13:30:59;
 - or -
COMMAND 9 PROCESSED “Any 255 char response
data ...“ 19971212 13:40:31;

Description:
This command is used to abort active presentation and application layer
processes. The abort command can be specified in various formats to allow
one or more active functions to be aborted. When an ABORT is processed,
all appropriate files and functions must be closed and terminated according
to the requirements of the specific operations being aborted.

3.10.5. Upload Request Command

Upload is defined as direction from machine to host.

Command: UPLOAD
Format: UPLOAD {fspec} ACTIVE | {av_fspec} | {gen_keyword}

{start_spec};
Parameters:

UPLOAD The keyword UPLOAD indicating the upload of a setup dataset.
fspec A network file specification which specifies the dataset file or

directory. All reported information is written to this file or
directory.

ACTIVE The keyword ACTIVE indicating the upload of the active setup

EUROMAP – SPI Data Exchange Interface V1.05a, Page 45

dataset from the machine.
av_fspec A file specification which specifies a dataset in the machine

archives indicating the upload of this dataset.
gen_keyword A manufactory specific keyword which specifies a proprietary

file transfer.
start_spec A valid START specification clause used to indicate when data

set upload will be started.
Example: UPLOAD “\\sv1\vol1\data\mach_00.stp”

 ACTIVE
 START IMM_MOULDNUMBER = 12345678; //

Response Data: Presentation layer error or completion message
Example: COMMAND 7 ERROR 06 00000001 “Any 255 char

message…“ 19971212 13:30:59;
 - or -
COMMAND 7 PROCESSED “Any 255 char response
data ...“ 19971212 13:40:31;

Description:
This command is used to upload a setup data set from a specific machine
and store it to the file {fspec}.

3.10.6. Download request Command

Download is defined as direction host to machine.

Command: DOWNLOAD
Format: DOWNLOAD {fspec} ACTIVE | {av_fspec} | {gen_keyword}

{start_spec};
Parameters:

DOWNLOAD The keyword DOWNLOAD indicating the download of a setup
dataset.

fspec A network file specification which specifies the dataset file or
directory. All reported information is written to this file or
directory.

ACTIVE The keyword ACTIVE indicating the download setup dataset as
active dataset in the machine.

av_fspec A file specification which specifies a dataset in the machine
archives.

gen_keyword A manufactory specific keyword which specifies a proprietary
file transfer.

start_spec A valid START specification clause used to indicate when data
set download will be started.

Example: DOWNLOAD “\\sv1\vol1\data\mach_01.stp”
 ACTIVE
 START IMMEDIATE; //

Response Data: Presentation layer error or completion message
Example: COMMAND 8 ERROR 06 00000001 “Any 255 char

message…“ 19971212 13:30:59;
 - or -
COMMAND 8 PROCESSED “Any 255 char response
data ...“ 19971212 13:40:31;

Description:
This command is used to download a setup data set to a specific machine
and store it to the file {fspec}. If the ARCHIVES keyword is not specified
the active data set otherwise the specified data set from the archives is
transferred.

EUROMAP – SPI Data Exchange Interface V1.05a, Page 46

3.10.7. GETINFO request Command

Command: GETINFO
Format: GETINFO {fspec};
Parameters:

GETINFO The keyword GETINFO indicating an upload of a hard- and
software information of a machine.

fspec A network file specification which specifies the response file. All
reported information is written to this file.

Example: GETINFO “\\sv\vol1\data\mach_00.inf”; //

Response Data: Presentation layer error or completion message
Example: COMMAND 9 ERROR 06 00000001 “Any 255 char

message…“ 19971212 13:30:59;
 - or -
COMMAND 9 PROCESSED “Any 255 char response
data ...“ 19971212 13:40:31;

Description:
This command is used to obtain information about the hardware and
software from an IMM and write it to the file {fspec}.

The following information is written to the specified application layer file
in response to this command:

Item Id (case sensitiv) Description
MachVendor Name of machine vendor, ASCII text in quotes, max.

255 character
MachNbr Machine serial number, ASCII text in quotes, max.

255 characters
MachDesc Machine description - ASCII text in quotes, max.

255 characters
ContrType Controller type – ASCII text in quotes, max. 255

characters.
ContrVersion Controller version – ASCII text in quotes, max 255

characters.

Version Software version – version of EUROMAP - SPI
definition.

MaxJobs Max. count jobs – numeric value in ASCII.
MaxEvents Max. active events for each type – list of type token

with numeric value in ASCII.
DownloadTypes List of manufatcory specific keywords which specify

a properitary download.
UploadTypes List of manufatcory specific keywords which specify

a properitary upload.
MaxReports Max. active reports – numeric value in ASCII.
MaxArchives Max. archives – numeric value in ASCII (0 ..

achives not supported)
InjUnitNbr Number of injection units – numeric value in ASCII
MaterialNbr Number of materials – numeric value in ASCII
CharDef Character definition, DOS-Codepage – ASCII text in

quotes, max 255 characters.
MaxSessions Defines the maximum number of sessions supported

by a machine. Also used in the formation of valid
Session Request File names.

ActiveJobs A list of all active jobs.
ActiveReports A list of all active reports.
ActiveEvents A list of all active event logs.

EUROMAP – SPI Data Exchange Interface V1.05a, Page 47

Format
specification:

MachVendor LD ”{string_const}“ ;
MachNbr LD ”{string_const}“ ;
MachDesc LD ”{string_const}“ ;
ContrType LD ”{string_const}“ ;
ContrVersion LD ”{string_const}“ ;
Version LD ”{string_const}“ ;
MaxJobs LD {num_const} ;
MaxEvents LD CHANGES {num_const} CURRENT_ALARMS
{num_const} ALARMS {num_const};
DownloadTypes LD {gen_keyword} ...;
UploadTypes LD {gen_keyword} ...;
MaxReports LD {num_const} ;
MaxArchives LD {num_const} ;
InjUnitNbr LD {num_const} ;
MaterialNbr LD {num_const} ;
CharDef LD ”{string_const}“ ;
MaxSessions LD {num_const} ;
ActiveJobs LD {“{job_name}“ “{job_fspec}“ “{response_fspec}“} ... ;
ActiveReports LD {“{report_name}“ “{job_fspec}“ “{response_fspec}“} ...
;
ActiveEvents LD {“{event_name}“ “{event_type}“ “{job_fspec}“
“{response_fspec}“} ... ;

Example:

MachVendor, "XYZ Machinery";
MachNbr, "65535";
MachDesc, "?";
ContrType, "XYZ 3000";
ContrVersion, "2.xx";
Version, "1.03";
MaxJobs, 99;
MaxEvents, CHANGES 2

CURRENT_ALARMS 1
ALARMS 0;

MaxReports, 99;
MaxArchives, 0;
InjUnitNbr, ;
MaterialNbr, ;
CharDef, "850";
MaxSessions, 99;
ActiveJobs,
 "report"
 "\\emspc477\vol1\e63\machines\65535\p\report.job"
 "\\emspc477\vol1\e63\machines\65535\p\report.dat"
 "getinfo"
 "\\emspc477\vol1\e63\machines\65535\p\getinfo.job"
 "\\emspc477\vol1\e63\machines\65535\p\getinfo.dat";
ActiveReports,
 "status"
 "\\emspc477\vol1\e63\machines\65535\p\report.job"

EUROMAP – SPI Data Exchange Interface V1.05a, Page 48

 "\\emspc477\vol1\e63\machines\65535\p\report.dat";
ActiveEvents,
"mychanges" CHANGES
 "\\emspc477\vol1\e63\machines\65535\p\eventchanges.job"
 "\\emspc477\vol1\e63\machines\65535\p\eventchanges.dat"
"yourchanges" CHANGES
 "\\emspc477\vol1\e63\machines\65535\p\eventchanges2.job"
 "\\emspc477\vol1\e63\machines\65535\p\eventchanges2.dat";

3.10.8. GETID request Command

Command: GETID
Format: GETID {fspec};
Parameters:
GETID The keyword GETID indicating a upload of all available

variables
fspec A network file specification which specifies the response file. All

reported information is written to this file.
Example: GETID “\\sv1\vol1\data\mach_00.id”;
Response Data: Presentation layer error or completion message
Example: COMMAND 18 ERROR 06 00000001 “Any 255 char

message…“ 19971212 13:30:59;
 - or -
COMMAND 18 PROCESSED “Any 255 char response
data ...“ 19971212 13:40:31;

Description:
This command is used to get all available variables from a IMM and store it
to the file {fspec}. The file contains the following information:

Parameter name - max. 255 character, no white space
Parameter type - one character, where
 A .. alpha numeric value,
 N .. numeric value,
 B .. boolean value (0..false, != 0..true)
Integer digits - number of integer digits
Fractional digits - number of fractional digits
Write permission - one character (0 .. update not allowed, 1 .. update
allowed)
Unit - ASCII text in quotes, max. 255 character
Description - ASCII text in quotes, max. 255 character

3.10.9. SET request Command

Command: SET
Format: SET {parm_id} Val;
Parameters:
SET The keyword SET indicating to set a variable in the IMM
{parm_id} The application layer parameter ID token which specifies a

parameter to be monitored.
Val Value of the variable.
Example: SET SetTimMach 08300020000627;

Response Data: Presentation layer error or completion message
Example: COMMAND 21 ERROR 06 00000001 “Any 255 char

message…“ 19971212 13:30:59;
 - or -
COMMAND 21 PROCESSED “Any 255 char response

EUROMAP – SPI Data Exchange Interface V1.05a, Page 49

data ...“ 19971212 13:40:31;
Description:

This command is used to set a variable to a specific machine.

EUROMAP – SPI Data Exchange Interface V1.05a, Page 50

3.11. IMM Device Token Summary

The following section provides a list of the defined parameter tokens for the
Injection Molding Machine application layer. The tokens describe both setup and actual
parameters and have been created according to the token naming conventions previously
described.

When creating vendor specific tokens outside of the tokens defined by the committee, the
conventions described here should be followed. To identify the token as a vendor specific
token, the at symbol ‘@’ is used as a prefix to the token symbol.

Notes:

ASC string data is represented in the FORMAT columns as VSTRING(n) where VSTRING
indicates a variable length ASCII string enclosed in quotation marks with a maximum length
of n characters (excluding the quotation marks). The ASCII string can include the space
character and contains ASCII code values based on the current code page in use by the
machine.

Character field data is represented in the FORMAT columns as CHAR(n) where CHAR
indicates a fixed length character string of n characters. The character fields are not
enclosed in quotes. Each position within the field is given a set of valid characters for that
position. The character values are always referenced according to U.S. code page 0.

Numeric data is represented in the FORMAT columns are NUMERIC. The numeric data is
output as ASC text in normalized or scientific formats.

The Set and Act prefixes for command tokens are used to identify SETPOINT and ACTUAL
machine values. These keywords DO NOT indicate whether a particular token can be READ
or WRITTEN.

Array data is expressed with each dimension enclosed within square brackets, such as
SetDescMat[2,1]. The dimension brackets are always required and multiple dimensions are
separated with commas within the single pair of brackets. All dimensions are numbered
starting with 1 and an asterisk ‘*’ can be used to specify all valid numbers for a particular
dimension where applicable. The GETID command returns the maximum number of entries
for all dimensional tokens.

Changes from previous version noted in italics.

EUROMAP – SPI Data Exchange Interface V1.05a, Page 51

Token Req Format Units Notes
SetDescMach No VSTRING(256) n/a Customer Device Description. Can be set to any text

string to help identify the machine to the customer.
SetTimMach Yes CHAR(14) n/a Clock Synchronization – 14 character field formatted

as follows:

HHMMSSYYYYMMDD
Where

HH: The hours value from 00 to 23
MM: The minutes value from 00 to 59
SS: The seconds value from 00 to 59
YYYY: The year
MM: The month from 01 to 12
DD: The date from 01 to 31

ActStsMach Yes CHAR (5) n/a Actual Machine Status. Each character field position
is used as follows:

Pos. 1: Machine Status
 0: Machine is running (powered on)
 1: Machine is not running (powered off)
Pos. 2: Machine Mode
 A: Automatic mode selected
 S: Semi-automatic mode is selected
 M: Manual mode is selected
 U: Setup mode is selected
 H: Hold to Run mode is selected
 C: Commissioning / Maintenance mode
is selected
 0: Unknown state currently selected
 I: Idle state currently selected
Pos. 3: Assist Call
 0: No assistance is required
 2: Assistance is required
Pos. 4: Bad Part (cycle by cycle, is re-
examined each cycle)
 0: Last cycle not bad
 1: Last cycle bad
Pos. 5: Active Alarm
 0: No active alarms
 1: Alarms are active

ActStsCyc No VSTRING(256) n/a Actual Cycle Status. Text string describes reason
machine is not currently in cycle.

SetCntCyc No NUMERIC Cycles Number of Machine Cycles Requested for Prod Run
ActCntCyc Yes NUMERIC Cycles Actual Cycle Count
ActCntCycRej No NUMERIC Cycles Production Rejects - Process Control
ActCntPrtRej No NUMERIC Parts Production Rejects Parts
SetDescJob No VSTRING(256) n/a Job Name / Description
SetDescOp No VSTRING(256) n/a Operator ID
SetDescPrt No VSTRING(256) n/a Part Name / Description
SetDescMld No VSTRING(256) n/a Mold or Tool Name / Description
SetDescMat[InjUnit,
Material]

No VSTRING(256) n/a Material Name - 1 or more entries for each injection
unit. Dimensional limits set by machine.

SetDescMatLot[InjUnit,
Material]

No VSTRING(256) n/a Material Lot Number - 1 or more entries for each
injection unit. Dimensional limits set by machine.

SetRecMld No VSTRING(256) n/a Mold Setup (Recipe) File Name
SetCntMld No NUMERIC Count (Cavities) Set Mold Count - Number of Cavities Run
ActCntMld No NUMERIC Count (Cavities) Act Mold Count - Number of Cavities Run
SetRecMldNxt No VSTRING(256) n/a Setup (Recipe) File Name of Next Mold to be Run
SetCntPrtBox No VSTRING(256) n/a Part Box Count
SetCntPrt No NUMERIC Count Piece Counter
ActCntPrt No NUMERIC Count Piece Counter

Table , Machine Status Tokens

EUROMAP – SPI Data Exchange Interface V1.05a, Page 52

Token Req Format Units Notes
ActCfgBrl[InjUnit] No CHAR(1) n/a Barrel Configuration - Active Barrels. Single character field

for each injection unit. ‘0’ indicates barrel is OFF, ‘1’
indicates barrel is ON.

SetDescBrlZn[InjUnit,
Zone].

No VSTRING(256) n/a Barrel Zone Description / Name. Maximum number of
injection units and zones specified by machine.

SetCfgBrlZn[InjUnit,
Zone]

No CHAR(1) n/a Barrel Temperature Zone Configuration. Single character
field for each injection unit barrel zone as follows:

O: Barrel Zone is OFF
0: Barrel Zone is Not Supported
A: Barrel Zone is in AUTO mode
T: Barrel Zone is in TUNING mode
S: Barrel Zone is in STANDBY mode
M: Barrel Zone is in MANUAL mode

SetTmpBrlZn[InjUnit,
Zone]

No NUMERIC Celsius Barrel Temperature Zone Set Temperatures.

ActTmpBrlZn[InjUnit,
Zone]

No NUMERIC Celsius Barrel Temperature Zone Actual Temperatures.

SetTmpBrlZnStb[InjUnit,
Zone]

No NUMERIC Celsius Barrel Temperature Zone Standby Set Temperatures.

SetTmpBrlZnHdev[InjUn
it, Zone]

No NUMERIC Celsius Barrel Temperature Zone High Deviation Setpoint. Deviation
setpoints are relative to the SetTmpBrlZn or SetTmpBrlZnStb
setpoints.

SetTmpBrlZnLdev[InjUn
it, Zone]

No NUMERIC Celsius Barrel Temperature Zone Low Deviation Setpoint. Deviation
setpoints are relative to the SetTmpBrlZn or SetTmpBrlZnStb
setpoints.

SetTmpBrlZnHlmt[InjUn
it, Zone]

No NUMERIC Celsius Barrel Temperature Zone High Limit Setpoint. Limit
setpoints are absolute temperature values.

SetTmpBrlZnLlmt[InjUni
t, Zone]

No NUMERIC Celsius Barrel Temperature Zone Low Limit Setpoint. Limit setpoints
are absolute temperature values.

Table , Barrel Temperature Tokens

Token Re
q

Format Units Notes

SetDescMldZn[Zone]. No VSTRING(256) n/a Mold Zone Description / Name. Maximum number of zones
specified by machine. Single character field for each injection
zone. ‘0’ indicates mold zone is OFF, ‘1’ indicates mold zone
is ON.

SetCfgMldZn[Zone] No CHAR(1) n/a Mold Temperature Zone Configuration. Single character field
for each mold zone as follows:

O: Mold Zone is OFF
0: Mold Zone is Not Supported
A: Mold Zone is in AUTO mode
T: Mold Zone is in TUNING mode
S: Mold Zone is in STANDBY mode
M: Mold Zone is in MANUAL mode

SetTmpMldZn[Zone] No NUMERIC Celsius Mold Temperature Zone Set Temperatures.
ActTmpMldZn[Zone] No NUMERIC Celsius Mold Temperature Zone Actual Temperatures.
SetTmpMldZnStb[Zone] No NUMERIC Celsius Mold Temperature Zone Standby Set Temperatures.
SetTmpMldZnHdev[Zone] No NUMERIC Celsius Mold Temperature Zone High Deviation Setpoint. Deviation

setpoints are relative to the SetTmpMldZn or
SetTmpMldZnStb setpoints.

SetTmpMldZnLdev[Zone] No NUMERIC Celsius Mold Temperature Zone Low Deviation Setpoint. Deviation
setpoints are relative to the SetTmpMldZn or
SetTmpMldZnStb setpoints.

SetTmpMldZnHlmt[Zone] No NUMERIC Celsius Mold Temperature Zone High Limit Setpoint. Limit setpoints
are absolute temperature values.

SetTmpMldZnLlmt[Zone] No NUMERIC Celsius Mold Temperature Zone Low Limit Setpoint. Limit setpoints
are absolute temperature values.

Table , Mould Temperature Tokens

Token Req Format Units Notes
ActTmpOil No NUMERIC Celsius Oil Actual Temperature

EUROMAP – SPI Data Exchange Interface V1.05a, Page 53

Token Req Format Units Notes
SetTmpOil No NUMERIC Celsius Oil Set Temperature
ActTmpWtrIn No NUMERIC Celsius Water Intake Actual Temperature
ActTmpWtrOut No NUMERIC Celsius Water Outlet Actual Temperature
ActTmpCab No NUMERIC Celsius Cabinet Actual Temperature
ActTmpMlt No NUMERIC Celsius Melt Actual Temperature

Table , Miscellaneous Temperature Tokens

Token Req Format Units Notes
ActTimFill[InjUnit] Yes NUMERIC Seconds Actual Fill Time for each injection unit.
ActTimPlst[InjUnit] Yes NUMERIC Seconds Actual Plasticization Time for each injection unit.
SetTimCyc Yes NUMERIC Seconds Overall Cycle Time Setpoint.
ActTimCyc Yes NUMERIC Seconds Actual Cycle Time.
ActStrCsh[InjUnit] No NUMERIC mm Actual Stroke Position at Cushion for each injection unit.
ActVolCsh[InjUnit] No NUMERIC cm3 Actual Volume at Cushion for each injection unit.
ActStrPlst[InjUnit] No NUMERIC mm Actual Plasticization Stroke for each injection unit.
SetStrPlst[InjUnit] No NUMERIC mm Plasticization Stroke Setpoint for each injection unit.
ActVolPlst[InjUnit] No NUMERIC cm3 Actual Plasticization Volume for each injection unit.
SetVolPlst[InjUnit] No NUMERIC cm3 Plasticization Volume Setpoint for each injection unit.
ActDiaScr[InjUnit] No NUMERIC mm Actual Screw Diameter for each injection unit.
SetDiaScr[InjUnit] No NUMERIC mm Screw Diameter Setpoint for each injection unit.
ActStrDcmpPre[InjUnit] No NUMERIC mm Actual Decompression Stroke Before Plasticization for each

injection unit.
SetStrDcmpPre[InjUnit] No NUMERIC mm Decompression Stroke Before Plasticization Setpoint for each

injection unit.
ActVolDcmpPre[InjUnit] No NUMERIC cm3 Actual Decompression Volume Before Plasticization for each

injection unit.
SetVolDcmpPre[InjUnit] No NUMERIC cm3 Decompression Volume Before Plasticization Setpoint for each

injection unit.
ActStrDcmpPst[InjUnit] No NUMERIC mm Actual Decompression Stroke After Plasticization for each

injection unit.
SetStrDcmpPst[InjUnit] No NUMERIC mm Decompression Stroke After Plasticization Setpoint for each

injection unit.
ActVolDcmpPst[InjUnit] No NUMERIC cm3 Actual Decompression Volume After Plasticization for each

injection unit.
SetVolDcmpPst[InjUnit] No NUMERIC cm3 Decompression Volume After Plasticization Setpoint for each

injection unit.
ActStrXfr[InjUnit] No NUMERIC mm Transfer Stroke Actual for each injection unit.
SetStrXfr[InjUnit] No NUMERIC mm Transfer Stroke Setpoint for each injection unit.
ActVolXfr[InjUnit] No NUMERIC cm3 Transfer Volume Actual for each injection unit.
SetVolXfr[InjUnit] No NUMERIC cm3 Transfer Volume Setpoint for each injection unit.
ActPrsXfrHyd[InjUnit] No NUMERIC bar Hydraulic Pressure at Transfer Actual for each injection unit.
SetPrsXfrHyd[InjUnit] No NUMERIC bar Hydraulic Pressure at Transfer Setpoint for each injection unit.
ActPrsXfrCav[InjUnit] No NUMERIC bar Cavity Pressure at Transfer Actual for each injection unit.
SetPrsXfrCav[InjUnit] No NUMERIC bar Cavity Pressure at Transfer Setpoint for each injection unit.
ActPrsXfrSpec[InjUnit] No NUMERIC bar Specific Pressure at Transfer Actual for each injection unit.
SetPrsXfrSpec[InjUnit] No NUMERIC bar Specific Pressure at Transfer Setpoint for each injection unit.
ActTimXfr[InjUnit] No NUMERIC seconds Time of Transfer Actual (relative from start of cycle)
SetTimXfr[InjUnit] No NUMERIC seconds Time of Transfer Setpoint (relative from start of cycle)
ActPrsCavMax No NUMERIC bar Cavity Maximum Pressure Actual
ActPrsMachHydMax No NUMERIC bar Machine Hydraulic Pressure Actual Maximum during cycle.
ActPrsMachSpecMax No NUMERIC bar Machine Specific Pressure Actual Maximum during cycle.
ActSpdPlstMax[InjUnit] No NUMERIC RPM Plasticization Speed Actual Maximum for each injection unit.
ActSpdPlstAve[InjUnit] No NUMERIC RPM Plasticization Speed Actual Average for each injection unit.
ActVelPlstMax[InjUnit] No NUMERIC mm/sec Plasticization Velocity Actual Maximum for each injection unit.
ActVelPlstAve[InjUnit] No NUMERIC mm/sec Plasticization Velocity Actual Average for each injection unit.
ActFrcClp No NUMERIC KN Clamp Force Actual
SetFrcClp No NUMERIC KN Clamp Force Setpoint
ActPrsHldHydMax No NUMERIC bar Hold Hydraulic Pressure Actual Maximum
ActPrsHldHydAveMax No NUMERIC bar Hold Hydraulic Pressure Actual Average
ActPrsHldSpecMax No NUMERIC bar Hold Specific Pressure Actual Maximum
ActPrsHldSpecAveMax No NUMERIC bar Hold Specific Pressure Actual Average
ActPrsPlstHydMax No NUMERIC bar Plasticization Hydraulic Pressure Actual Maximum
ActPrsPlstHydAveMax No NUMERIC bar Plasticization Hydraulic Pressure Actual Average
ActPrsPlstSpecMax No NUMERIC bar Plasticization Specific Pressure Actual Maximum
ActPrsPlstSpecAveMax No NUMERIC bar Plasticization Specific Pressure Actual Average

Table , Process Monitoring Parameter Tokens

EUROMAP – SPI Data Exchange Interface V1.05a, Page 54

3.12. Token Summary for other devices

This section is open for the development of new command token sets for non-IMM
devices (such as extruders, etc.).

3.13. Unit Summary

In Europe the SI system was defined in 1948 and has been in use since the 1960’s
(SI = Système International d’Unitiés - International Unit System). It compromises seven
basic units and several other units derived from these basic units.

The basic units are:
m meter
kg kilogram
s second
A Ampere
K Kelvin
mol matter quantity (used in chemistry)
cd Candela

For historical reasons some units that are not recommended for use by the SI system
are still in common use in industry (e.g. cm³ = cubic centimeter, °C = degree Celsius).
In the plastic machinery industry a set of preferred units gained acceptance for the physical
quantities used in injection molding machines. These are marked with an asterisk. Of
Course these preferred units can vary from one manufacturer to another, since these units are
not standardized.

Counters pure number, no unit
Displacement
Dimensions

* mm (millimeter)
m (meter)

Energy
*

J (Joule = Ws)
kWh (kilowatt hour)

Force
*

N (Newton)
kN (kilonewton)

Mass * g (gramme)
kg (kilogramme)

Mass stream * g/s
kg/s

Power
*

W (Watt)
kW (kilowatt)

Pressure * bar (= Newton per cm²)
Pa (Pascal = N/m², unicommon)
hPa (hectopascal, equivalent to mbar

Rotation speed * 1/min (revolutions per minute)
Temperature * degree Celsius (degree centigrade)
Time * s (second)

ms (millisecond)
Velocity * mm/s (millimeter per second)

m/s (meter per second)
injection speed can also be expressed in cm³/s

Volume * cm³ (cubic centimeter, not a recommended unit, but widely
used
l (liter)
ml (milliliter, same as cm³)

Volume stream * cm³/s
Table , Physical Units Used in Injection Moulding Machines
Many parameters may also be expressed as a unit-less percentage of a maximum value.

EUROMAP – SPI Data Exchange Interface V1.05a, Page 55

3.14. Application Examples

This chapter contains a set of application examples in order to assist in the
understanding the commands of the file based date interchange. Keywords are written in
capital letters.

3.14.1. Recording of Process Log

JOB file (PD.JOB)

JOB pd RESPONSE “\\server1\vol1\mach_10\pd.log”;

REPORT spc
 APPEND “\\server1\vol1\mach_10\prot\spc.dat”
 START IMMEDIATE // start the report immediate
 STOP NEVER // no special stop condition
 CYCLIC SHOT 1 // record parameters every shot
 SESSION 1000 // record 1000 cycles (=1000
shots)
 PARAMETERS
 DATE,
 TIME,
 COUNT,
 ActCntCyc,
 ActCntCycRej,
 ActFrcClp,
 @ActMyPara;

Presentation Layer Response File (PD.LOG)

COMMAND 1 PROCESSED “JOB command“ 19971207 10:15:32
COMMAND 2 PROCESSED “REPORT command“ 19971207 10:15:32

Application Layer Response File

Report response file (SPC.DAT)

DATE,TIME,COUNT,ActCntCyc,ActCntCycRej,ActFrcClp,@ActMyPa
ra
19971208,10:15:50,1,1000,5,800.4,30.6
19971208,10:16:10,2,1001,5,800.3,30.2
19971208,10:16:30,3,1002,6,799.9,31.0
19971208,10:16:50,4,1003,6,800.0,30.0
19971208,10:17:10,5,1004,6,800.1,30.1
....

19971208,16:10:10,999,1990,8,800.1,30.7
19971208,16:10:30,1000,1999,8,800.7,30.2

EUROMAP – SPI Data Exchange Interface V1.05a, Page 56

3.14.2. Recording of Alarm Log

JOB file (ALR.JOB)

JOB alr RESPONSE “\\server1\vol1\mach_10\alr.log”;

EVENT myEventAlarms ALARMS REWRITE
“\\server1\vol1\mach_10\prot\alr.dat”
START IMMEDIATE // start the report
immediate
STOP TIME>= 18:00:00; // stop recording at 6 pm

Presentation Layer Response File (ALR.LOG)

COMMAND 1 PROCESSED “JOB command“ 19971207 10:15:32
COMMAND 2 PROCESSED “EVENT command“ 19971207 10:15:33

Application Layer Response File

Event response file (ALR.DAT)

1,199701208,10:16:30,1002,1,0003,“Value out of range“
2,199701208,10:16:39,1002,0,0003,“Value out of range“
.....

3.14.3. Recording of Process Log for a Status View

JOB file (STATUS.JOB)

JOB machstat RESPONSE
“\\server1\vol1\mach_10\status.log”;

REPORT status REWRITE
 “\\server1\vol1\mach_10\prot\status.dat” //cyclic
 //overwriting
 START IMMEDIATE // start the report immediate
 STOP NEVER // no stop condition
 CYCLIC TIME 00:00:10 // record parameters every 10 sec
 PARAMETERS
 ActStsMach;

Application Layer Response Files

Report response file (STATUS.DAT)

ActStsMach
0A001

EUROMAP – SPI Data Exchange Interface V1.05a, Page 57

3.14.4. Recording of Alarm Log for a Status View

JOB file (ALARM.JOB)

JOB alarm RESPONSE “\\server1\vol1\mach_10\alarm.log”;

EVENT CURRENT_ALARMS REWRITE
“\\server1\vol1\mach_10\prot\alarm.dat”
 START IMMEDIATE // start the report immediate
 STOP NEVER; // no stop condition

Presentation Layer Response file (ALARM.LOG)

COMMAND 1 PROCESSED “JOB command“ 19971207 11:35:13
COMMAND 2 PROCESSED “EVENT command“ 19971207 11:35:13

Event response file (ALARM.DAT)

1,199701208,11:50:31,1103,1,0003,“Value out of range“
2,199701208,11:50:31,1103,1,0010,“Clamping force too
high“

3.14.5. Download a Data Set (Example 1)

JOB file (DOWNLOAD.JOB)

JOB download RESPONSE
“\\server1\vol1\mach_10\download.log”;

DOWNLOAD “\\server1\vol1\mach_10\data\dataset_1”
 ACTIVE // overwrite active data set
 START IMMEDIATE; // start the download immediate

// after writing this file

Presentation Layer Response file (DOWNLOAD.LOG)

COMMAND 1 PROCESSED “JOB command“ 19971207 11:35:13
COMMAND 2 ERROR 06 00000016 “DOWNLOAD operation denied.“
19971207 11:35:13

Application Layer Response Files

none

EUROMAP – SPI Data Exchange Interface V1.05a, Page 58

3.14.6. Download a Data Set (Example 2)

JOB file (DOWNLOAD.JOB)

JOB download RESPONSE
“\\server1\vol1\mach_10\download.log”;

DOWNLOAD “\\server1\vol1\mach_10\data\dataset_2”
 dataset_2 // overwrite archives
dataset_2
 START SetDescPrt = “A1000140“; // start the download if

 // part name = A1000140

Presentation Layer Response file (DOWNLOAD.LOG)

COMMAND 1 PROCESSED “JOB command“ 19971207 14:15:43
COMMAND 2 PROCESSED “DOWNLOAD command“ 19971207 14:15:43

Application Layer Response Files

none

3.14.7. Setting Several Parameters

JOB file (SET.JOB)

JOB set RESPONSE “\\server1\vol1\mach_10\set.log”;
SET SetDescMold “MOLD 1314“;
SET SetTimMach 10150019971201;
SET SetCntCyc 1000;
SET @SetMyPara_1 23.6;
SET @SetMyPara_2 100000.6;

Presentation Layer Response file (SET.LOG)

COMMAND 1 PROCESSED “JOB command“ 19971201 10:15:32
COMMAND 2 PROCESSED “SET command“ 19971201 10:15:32
COMMAND 3 PROCESSED “SET command“ 19971201 10:15:32
COMMAND 4 PROCESSED “SET command“ 19971201 10:15:33
COMMAND 5 PROCESSED “SET command“ 19971201 10:15:33
COMMAND 6 ERROR 06 00000021 “SET value out of range“
19971201 11:15:33

Application Layer Response Files

none

EUROMAP – SPI Data Exchange Interface V1.05a, Page 59

3.14.8. GETID Command

JOB file (GETID.JOB)

JOB set RESPONSE “\\server1\vol1\mach_10\getid.log”;
GETID “\\server1\vol1\mach_10\config.dat”;

Presentation Layer Response file (GETID.LOG)

COMMAND 1 PROCESSED “JOB command“ 19971201 10:15:32
COMMAND 2 PROCESSED “GETID command“ 19971201 10:15:32

Application Layer Response File (CONFIG.DAT)

ActTimFill[1],N,3,1,0,“Seconds“,“Actual Fill Time for
injection unit 1“
ActTimFill[2],N,3,1,0,“Seconds“,“Actual Fill Time for
injection unit 2“
ActTimPlst[1],N,3,1,0,“Seconds“,“Actual Plasticization
for injection unit 1“
ActTimPlst[2],N,3,1,0,“Seconds“,“Actual Plasticization
for injection unit 2“
SetTimCyc,N,3,1,1,“Seconds“,“Overall Cycle Time Setpoint“
ActTimCyc,N,3,1,0,“Seconds“,“Actual Cycle Time“
...

@SetMyTextPara_1,A,20,0,1,““,“First Text parameter“
@SetMyTextPara_2,A,20,0,1,““,“Second Text parameter“
@SetMyBoolPara_1,B,1,0,1,““,“First boolean parameter“
@SetMyBoolPara_2,B,1,0,1,““,“Second boolean parameter“
@ActMyNumericPara_1,N,4,1,0,“mm“,“First numeric
parameter“
@SetMyNumericPara_2,N,3,2,1,“kN“,“Second numeric
parameter“
@20100,N,4,1,1,“bar“,“Third numeric parameter“
@100,N,8,0,1,““,“Another numeric parameter“
...

